Order optimal preconditioners for fully implicit Runge‐Kutta schemes applied to the bidomain equations

The partial differential equation part of the bidomain equations is discretized in time with fully implicit Runge–Kutta methods, and the resulting block systems are preconditioned with a block diagonal preconditioner. By studying the time-stepping operator in the proper Sobolev spaces, we show that the preconditioned systems have bounded condition numbers given that the Runge–Kutta scheme is A-stable and irreducible with an invertible coefficient matrix. A new proof of order optimality of the preconditioners for the one-leg discretization in time of the bidomain equations is also presented. The theoretical results are verified by numerical experiments. Additionally, the concept of weakly positive-definite matrices is introduced and analyzed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq Eq 27: 1290–1312, 2011

[1]  Ragnar Winther,et al.  A domain embedding preconditioner for the Lagrange multiplier system , 2000, Math. Comput..

[2]  Trygve K. Nilssen,et al.  Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs , 2006 .

[3]  Kent-André Mardal,et al.  Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..

[4]  Kenneth H. Karlsen,et al.  Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue , 2006, Networks Heterog. Media.

[5]  T. Nilssen,et al.  Weakly positive definite matrices , 2005 .

[6]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[7]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[8]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2006, Numerische Mathematik.

[9]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[10]  Xing Cai,et al.  An order optimal solver for the discretized bidomain equations , 2007, Numer. Linear Algebra Appl..

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  R. Winslow,et al.  Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. , 1999, Circulation research.

[13]  Leslie Tung,et al.  A bi-domain model for describing ischemic myocardial d-c potentials , 1978 .

[14]  Xing Cai,et al.  On the Computational Complexity of the Bidomain and the Monodomain Models of Electrophysiology , 2006, Annals of Biomedical Engineering.

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[16]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[17]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[18]  Rodrigo Weber dos Santos,et al.  Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model , 2007, IEEE Transactions on Biomedical Engineering.

[19]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[20]  H. Hu A Projective Method for Rescaling a Diagonally Stable Matrix to be Positive Definite , 1992, SIAM J. Matrix Anal. Appl..

[21]  K. Karlsen,et al.  Convergence of a finite volume scheme for the bidomain model of cardiac tissue , 2009 .

[22]  D. Arnold,et al.  Preconditioning discrete approximations of the Reissner-Mindlin plate model , 1997 .

[23]  K. Mardal,et al.  Block preconditioners for fully implicit Runge-Kutta schemes applied to the Bidomain equations , 2006 .