Significant average ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p–d hybridization

An effective strategy of the weakening of p–d hybridization is devised to enhance the thermoelectric properties of Cu3SbSe4via Ag substitution.

[1]  Yue Chen,et al.  Lattice Strain Advances Thermoelectrics , 2019, Joule.

[2]  J. Urban Anharmonic Convergence: Tuning Two Dials on Phonons for High zT in p-type PbTe , 2019, Joule.

[3]  Xiaofang Li,et al.  Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity , 2019, Proceedings of the National Academy of Sciences.

[4]  J. Zou,et al.  Ag doping induced abnormal lattice thermal conductivity in Cu2Se , 2018 .

[5]  G. J. Snyder,et al.  Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance , 2018, Energy & Environmental Science.

[6]  M. Kanatzidis,et al.  High Thermoelectric Performance in Polycrystalline SnSe Via Dual‐Doping with Ag/Na and Nanostructuring With Ag8SnSe6 , 2018, Advanced Energy Materials.

[7]  V. Nicolosi,et al.  Enhanced thermoelectric performance of Bi-Sb-Te/Sb2O3 nanocomposites by energy filtering effect , 2018 .

[8]  G. Rogl,et al.  Direct SPD-processing to achieve high-ZT skutterudites , 2018, Acta Materialia.

[9]  G. J. Snyder,et al.  Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering , 2018 .

[10]  Peng Bai,et al.  Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT , 2018, Nano Energy.

[11]  Yue Chen,et al.  Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe , 2018, Advanced Functional Materials.

[12]  A. Cabot,et al.  Thermoelectric Properties of Doped-Cu3SbSe4 Compounds: A First-Principles Insight. , 2018, Inorganic chemistry.

[13]  K. Biswas,et al.  Crystalline Solids with Intrinsically Low Lattice Thermal Conductivity for Thermoelectric Energy Conversion , 2018 .

[14]  Gang Chen,et al.  Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance , 2018 .

[15]  Shufang Wang,et al.  Multinary diamond-like chalcogenides for promising thermoelectric application* , 2018 .

[16]  Li-dong Zhao,et al.  Anharmoncity and low thermal conductivity in thermoelectrics , 2018 .

[17]  M. Dargusch,et al.  Realizing zT of 2.3 in Ge1−x−ySbxInyTe via Reducing the Phase‐Transition Temperature and Introducing Resonant Energy Doping , 2018, Advanced materials.

[18]  Yue Chen,et al.  High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons , 2017 .

[19]  V. Kanchana,et al.  Novel natural super-lattice materials with low thermal conductivity for thermoelectric applications: A first principles study , 2017 .

[20]  Junyou Yang,et al.  Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking , 2017 .

[21]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[22]  Junyou Yang,et al.  Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu3SbSe4. , 2017, ACS applied materials & interfaces.

[23]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[24]  G. J. Snyder,et al.  Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu2Se1–xSx Liquid-like Materials , 2017 .

[25]  Junyou Yang,et al.  Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation , 2017 .

[26]  Antonio M. López,et al.  Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators , 2017 .

[27]  Hee Seok Kim,et al.  The bridge between the materials and devices of thermoelectric power generators , 2017 .

[28]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[29]  Junyou Yang,et al.  Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe , 2016 .

[30]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[31]  Junyou Yang,et al.  Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping , 2016 .

[32]  D. Rowe Materials, preparation, and characterization in thermoelectrics , 2016 .

[33]  Junyou Yang,et al.  Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement , 2016 .

[34]  Junyou Yang,et al.  Large enhancement of thermoelectric performance of CuInTe2 via a synergistic strategy of point defects and microstructure engineering , 2015 .

[35]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[36]  Peihong Zhang,et al.  Electronic properties of energy harvesting Cu-chalcogenides: p–d hybridization and d-electron localization , 2015 .

[37]  Ali Shakouri,et al.  Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. , 2015, Nano letters.

[38]  Haijun Wu,et al.  High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. , 2014, Journal of the American Chemical Society.

[39]  D. Do,et al.  Theoretical study of defects Cu 3 SbSe 4 : Search for optimum dopants for enhancing thermoelectric properties , 2014, 1409.4496.

[40]  G. J. Snyder,et al.  Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap , 2014 .

[41]  Jingfeng Li,et al.  Enhanced Thermoelectric Performance of Nonstoichiometric Compounds Cu3−xSbSe4 by Cu Deficiencies , 2014, Journal of Electronic Materials.

[42]  Rui Li,et al.  Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1−xSnxSe4−ySy with a high thermoelectric performance , 2013 .

[43]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[44]  Jian Zhang,et al.  Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures , 2013 .

[45]  S. Mahanti,et al.  Bonds, bands, and band gaps in tetrahedrally bonded ternary compounds: The role of group V lone pairs , 2013, 1306.0503.

[46]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[47]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[48]  E. Lara‐Curzio,et al.  Doping Effects on the Thermoelectric Properties of Cu3SbSe4 , 2011 .

[49]  D. Morelli,et al.  High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solution , 2011 .

[50]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[51]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[52]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[53]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[54]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[55]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[56]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[61]  Cheng-Lung Chen,et al.  Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping , 2017 .

[62]  Xianli Su,et al.  Multi‐Scale Microstructural Thermoelectric Materials: Transport Behavior, Non‐Equilibrium Preparation, and Applications , 2017, Advanced materials.

[63]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .