Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia

[1]  T. Wieloch,et al.  Persistent Translocation and Inhibition of Ca2+/Calmodulin‐Dependent Protein Kinase II in the Crude Synaptosomal Fraction of the Vulnerable Hippocampus Following Hypoglycemia , 1995, Journal of neurochemistry.

[2]  T. Wieloch,et al.  Persistent Translocation of Ca2+/Calmodulin‐Dependent Protein Kinase II to Synaptic Junctions in the Vulnerable Hippocampal CA1 Region Following Transient Ischemia , 1995, Journal of neurochemistry.

[3]  D. Attwell,et al.  Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms , 1994, Trends in Neurosciences.

[4]  T Suzuki,et al.  Rapid Translocation of Cytosolic Ca2+/Calmodulin‐Dependent Protein Kinase II into Postsynaptic Density After Decapitation , 1994, Journal of neurochemistry.

[5]  E. Jones,et al.  Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer's disease , 1994, Neuroscience.

[6]  T. Wieloch,et al.  Tyrosine Phosphorylation and Activation of Mitogen‐ Activated Protein Kinase in the Rat Brain Following Transient Cerebral Ischemia , 1994, Journal of neurochemistry.

[7]  Kathleen Kelly,et al.  Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1 , 1994, Nature.

[8]  D. Benson,et al.  Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory- motor cortex: comparison with GAD-67 expression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Hong Sun,et al.  MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo , 1993, Cell.

[10]  M. Kennedy The postsynaptic density , 1993, Current Opinion in Neurobiology.

[11]  D. Shackelford,et al.  Inactivation and Subcellular Redistribution of Ca2+/ Calmodulin‐Dependent Protein Kinase II Following Spinal Cord Ischemia , 1993, Journal of neurochemistry.

[12]  Y. Kitamura,et al.  Stimulatory Effects of Protein Kinase C and Calmodulin Kinase II on N‐Methyl‐d‐Aspartate Receptor/Channels in the Postsynaptic Density of Rat Brain , 1993, Journal of neurochemistry.

[13]  T. Wieloch,et al.  Casein Kinase II Activity in the Postischemic Rat Brain Increases in Brain Regions Resistant to Ischemia and Decreases in Vulnerable Areas , 1993, Journal of neurochemistry.

[14]  H. Sugiura,et al.  Characterization and autophosphorylation of Ca2+/calmodulin-dependent protein kinase in the postsynaptic density of the rat forebrain , 1993, Brain Research.

[15]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[16]  C. Moskaluk,et al.  PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. , 1993, Science.

[17]  F Benfenati,et al.  Synaptic vesicle phosphoproteins and regulation of synaptic function. , 1993, Science.

[18]  J. McNamara,et al.  Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways , 1993, Neuron.

[19]  B. Siesjö,et al.  The influence of moderate hypothermia on cellular calcium uptake in complete ischaemia: implications for the excitotoxic hypothesis. , 1992, Acta physiologica Scandinavica.

[20]  A. Aderem The Marcks brothers: A family of protein kinase C substrates , 1992, Cell.

[21]  R. Campos-González,et al.  Tyrosine Phosphorylation of Microtubule‐Associated Protein Kinase After Transient Ischemia in the Gerbil Brain , 1992, Journal of neurochemistry.

[22]  B. Sankaran,et al.  Global Forebrain Ischemia Induces a Posttranslational Modification of Multifunctional Calcium‐ and Calmodulin‐Dependent Kinase II , 1992, Journal of neurochemistry.

[23]  M. Kindy,et al.  Calcium/calmodulin dependent protein kinase II mRNA in the gerbil brain after cerebral ischemia , 1992, Neuroscience Letters.

[24]  Alcino J. Silva,et al.  Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[25]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[26]  J. Grotta,et al.  Ischemia‐Induced Translocation of Ca2+/Calmodulin‐Dependent Protein Kinase II: Potential Role in Neuronal Damage , 1992, Journal of neurochemistry.

[27]  K. Fukunaga,et al.  Regional and Temporal Alterations in Ca2+/Calmodulin‐Dependent Protein Kinase II and Calcineurin in the Hippocampus of Rat Brain After Transient Forebrain Ischemia , 1992, Journal of neurochemistry.

[28]  T. Soderling,et al.  Ischemia‐Induced Loss of Brain Calcium/Calmodulin‐Dependent Protein Kinase II , 1992, Journal of neurochemistry.

[29]  C. Gall,et al.  Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+ /calmodulin protein kinase gene expression in the rat centrat nervous system , 1992, Neuroscience.

[30]  D. L. Benson,et al.  Dendritic localization of type II calcium calmodulin-dependent protein kinase mRNA in normal and reinnervated rat hippocampus , 1992, Neuroscience.

[31]  A. Mitani,et al.  Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: Brain microdialysis study , 1991, Neuroscience.

[32]  T. Wieloch,et al.  Hypothermia Prevents the Ischemia‐Induced Translocation and Inhibition of Protein Kinase C in the Rat Striatum , 1991, Journal of neurochemistry.

[33]  E. Masliah,et al.  Protein kinases and phosphorylation in neurologic disorders and cell death. , 1991, Laboratory investigation; a journal of technical methods and pathology.

[34]  P. Greengard,et al.  Regulation by synapsin I and Ca(2+)‐calmodulin‐dependent protein kinase II of the transmitter release in squid giant synapse. , 1991, The Journal of physiology.

[35]  C. Gall,et al.  Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex [published erratum appears in J Neurosci 1991 May;11(5):following Table of Contents] , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  R. E. Blair,et al.  Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. , 1990, Stroke.

[37]  T. Wieloch,et al.  Protein kinase C is translocated to cell membranes during cerebral ischemia , 1990, Neuroscience Letters.

[38]  R. Sims,et al.  Mild Hypothermia Prevents Ischemic Injury in Gerbil Hippocampus , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  M D Ginsberg,et al.  Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. , 1989, Stroke.

[40]  D. Choi Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage , 1988, Trends in Neurosciences.

[41]  R. E. Blair,et al.  Cerebral ischemia decreases endogenous calcium-dependent protein phosphorylation in gerbil brain , 1988, Brain Research.

[42]  R Llinás,et al.  Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Siesjö,et al.  Models for studying long‐term recovery following forebrain ischemia in the rat. 2. A 2‐vessel occlusion model , 1984, Acta neurologica Scandinavica.

[44]  J. Goldenring,et al.  Identification of the Major Postsynaptic Density Protein as Homologous with the Major Calmodulin‐Binding Subunit of a Calmodulin‐Dependent Protein Kinase , 1984, Journal of neurochemistry.

[45]  P. Greengard,et al.  Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Kogure,et al.  Long-term structural and biochemical events in the hippocampus following transient global ischemia. , 1993, Progress in brain research.

[47]  T. Kirino Presynaptic terminals in hippocampal gliosis following transient ischemia in the Mongolian gerbil. , 1993, Progress in brain research.

[48]  T. Wieloch,et al.  Protein phosphorylation and the regulation of mRNA translation following cerebral ischemia. , 1993, Progress in brain research.

[49]  H. Schulman,et al.  Neuronal Ca2+/calmodulin-dependent protein kinases. , 1992, Annual review of biochemistry.

[50]  T. Wieloch,et al.  Postischemic Blockade of AMPA but Not NMDA Receptors Mitigates Neuronal Damage in the Rat Brain following Transient Severe Cerebral Ischemia , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.