Global solutions of the KleinGordonSchrdinger system with rough data in R 2 + 1

Abstract In this paper, we consider the Klein–Gordon–Schrodinger system with quadratic (Yakuwa) coupling and cubic autointeractions in R 2 + 1 , and prove the existence and uniqueness of global solution for rough data. The techniques to be used are adapted from a general scheme originally introduced by J. Bourgain to split the data into the low and high frequency parts.

[1]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[2]  H. Pecher GLOBAL SOLUTIONS WITH INFINITE ENERGY FOR THE ONE-DIMENSIONAL ZAKHAROV SYSTEM , 2004, math/0409204.

[3]  J. Bourgain,et al.  Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .

[4]  Alain Bachelot Problème de Cauchy pour des systèmes hyperboliques semi‐linéaires , 1984, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[5]  Luis Vega,et al.  The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .

[6]  Jean Bourgain,et al.  Global Solutions of Nonlinear Schrodinger Equations , 1999 .

[7]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .

[8]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[9]  C. Miao,et al.  Hs-global well-posedness for semilinear wave equations , 2003 .

[10]  Isamu Fukuda,et al.  On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions , 1975 .

[11]  J. Ginibre,et al.  On the Cauchy Problem for the Zakharov System , 1997 .

[12]  J. Colliander,et al.  Global wellposedness for KdV below ${L^2}$ , 1999 .

[13]  Masayoshi Tsutsumi,et al.  On coupled Klein-Gordon-Schrödinger equations, II , 1978 .

[14]  Axel Grünrock New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations , 2002 .

[15]  C. Kenig,et al.  Global well-posedness for semi-linear wave equations , 2000 .

[16]  Miao Changxing,et al.  GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON EQUATION BELOW THE ENERGY NORM* , 2004 .

[17]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[18]  S. Klainerman,et al.  Smoothing estimates for null forms and applications , 1995 .

[20]  Felipe Linares,et al.  GLOBAL WELL-POSEDNESS FOR THE MODIFIED KORTEWEG-DE VRIES EQUATION , 1999 .

[21]  Alain Bachelot Global existence of large amplitude solutions for Dirac-Klein-Gordon systems in Minkowski space , 1989 .

[22]  J. Bourgain Scattering in the energy space and below for 3D NLS , 1998 .

[23]  J. Ginibre,et al.  Generalized Strichartz Inequalities for the Wave Equation , 1995 .