Precise estimates on the rate at which certain diffusions tend to equilibrium

[1]  Daniel W. Stroock,et al.  Uniform andL2 convergence in one dimensional stochastic Ising models , 1989 .

[2]  George Gasper Linearization of the product of Jacobi polynomials. III , 1970 .

[3]  O. Rothaus,et al.  Hypercontractivity and the Bakry-Emery criterion for compact Lie groups , 1986 .

[4]  Boguslaw Zegarlinski,et al.  The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition , 1992 .

[5]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[6]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[7]  L. Saloff‐Coste Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below , 1994 .

[8]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[9]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[10]  S. Ilias Constantes explicites pour les in'egalit`es de Sobolev sur les vari'et'es riemanniennes compactes , 1983 .

[11]  D. Stroock Logarithmic Sobolev inequalities for gibbs states , 1993 .

[12]  D. Bakry Transformation de Riesz pour les semi-groupes symétriques. Première partie : étude de la dimension 1 , 1985 .

[13]  S. Helgason Groups and geometric analysis , 1984 .

[14]  P. Diaconis Group representations in probability and statistics , 1988 .

[15]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[16]  M. Ledoux On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions , 1992 .

[17]  A. L. Onishchik,et al.  Lie groups and algebraic groups , 1990 .

[18]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[19]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[20]  E. Cartan Sur la détermination d’un système orthogonal complet dans un espace de riemann symétrique clos , 1929 .

[21]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[22]  J. Rosenthal Random Rotations: Characters and Random Walks on SO(N) , 1994 .

[23]  R. Brooks On the spectrum of non-compact manifolds with finite volume , 1984 .

[24]  O. Rothaus Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .

[25]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[26]  C. Mueller,et al.  Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .

[27]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[28]  P. Diaconis,et al.  Strong uniform times and finite random walks , 1987 .

[29]  D. Stroock,et al.  Upper bounds for symmetric Markov transition functions , 1986 .

[30]  B. Simon A remark on Nelson’s best hypercontractive estimates , 1976 .

[31]  Andrzej Korzeniowski,et al.  An example in the theory of hypercontractive semigroups , 1985 .