Existence of a positive solution to a system of discrete fractional boundary value problems

Abstract We analyze a system of discrete fractional difference equations subject to nonlocal boundary conditions. We consider the system of equations given by - Δ ν i y i ( t ) = λ i a i ( t + ν i - 1 ) f i ( y 1 ( t + ν 1 - 1 ) , y 2 ( t + ν 2 - 1 ) ) , for t ∈ [ 0 , b ] N 0 , subject to y i ( ν i  − 2) =  ψ i ( y i ) and y i ( ν i  +  b ) =  ϕ i ( y i ), for i  = 1, 2, where ψ i , ϕ i : R b + 3 → R are given functionals. We also assume that ν i  ∈ (1, 2], for each i . Although we assume that both a i and f i ( y 1 ,  y 2 ) are nonnegative for each i , we do not necessarily presume that each ψ i ( y i ) and ϕ i ( y i ) is nonnegative for each i and each y i  ⩾ 0. This generalizes some recent results both on discrete fractional boundary value problems and on discrete integer-order boundary value problems, and our techniques provide new results in each case.

[1]  Ying Wang,et al.  Existence of Positive Solutions for Second-Order m-Point Boundary Value Problems on Time Scales , 2006 .

[2]  Xinwei Su,et al.  Boundary value problem for a coupled system of nonlinear fractional differential equations , 2009, Appl. Math. Lett..

[3]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[5]  CHUNLI WANG,et al.  POSITIVE SOLUTIONS TO NONLINEAR SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEMS FOR DIFFERENCE EQUATION WITH CHANGE OF SIGN , 2008 .

[6]  R. Ma,et al.  Positive Solutions of Three-point Nonlinear Discrete Second Order Boundary Value Problem , 2004 .

[7]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[8]  D. Anderson Solutions to Second-order Three-point Problems on Time Scales , 2002 .

[9]  Juan J. Nieto,et al.  Fractional order differential equations on an unbounded domain , 2010 .

[10]  Christopher S. Goodrich,et al.  Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions , 2011, Comput. Math. Appl..

[11]  Daqing Jiang,et al.  Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation , 2009 .

[12]  Johnny Henderson,et al.  Double Symmetric solutions for discrete lidstone boundary value problems , 2001 .

[13]  George A. Anastassiou,et al.  Foundations of nabla fractional calculus on time scales and inequalities , 2010, Comput. Math. Appl..

[14]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[15]  C. Goodrich,et al.  SOLUTIONS TO A DISCRETE RIGHT-FOCAL FRACTIONAL BOUNDARY VALUE PROBLEM , 2010 .

[16]  J. Henderson,et al.  Positive solutions for systems of nonlinear discrete boundary value problems , 2009 .

[17]  Varsha Daftardar-Gejji,et al.  Existence of positive solutions of nonlinear fractional differential equations , 2003 .

[18]  Ravi P. Agarwal,et al.  A coupled system of difference equations , 2000, Appl. Math. Comput..

[19]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[20]  Tingting Qiu,et al.  Positive solutions for boundary value problem of nonlinear fractional differential equation. , 2008 .

[21]  Christopher S. Goodrich,et al.  Some new existence results for fractional difference equations , 2011 .

[22]  Haiyan Wang,et al.  Existence and multiplicity of positive solutions for elliptic systems , 1997 .

[23]  Christopher S. Goodrich,et al.  Continuity of solutions to discrete fractional initial value problems , 2010, Comput. Math. Appl..

[24]  Paul W. Eloe,et al.  Two-point boundary value problems for finite fractional difference equations , 2011 .

[25]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[26]  Christopher S. Goodrich,et al.  Existence of a positive solution to a class of fractional differential equations , 2010, Appl. Math. Lett..

[27]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[28]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[29]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[30]  Douglas R. Anderson,et al.  Existence of solutions for first-order multi-point problems with changing-sign nonlinearity , 2008 .

[31]  Patricia J. Y. Wong,et al.  Multiple positive solutions for discrete nonlocal boundary value problems , 2007 .

[32]  Youssef N. Raffoul,et al.  Positive solutions for a nonlinear functional dynamic equation on a time scale , 2005 .

[33]  Paul W. Eloe,et al.  Fractional q-Calculus on a time scale , 2007 .

[34]  Johnny Henderson,et al.  Twin solutions of boundary value problems for ordinary differential equations and finite difference equations , 2001 .

[35]  Gennaro Infante,et al.  Positive Solutions of Nonlocal Boundary Value Problems: A Unified Approach , 2006 .

[36]  Johnny Henderson,et al.  Multiple Symmetric Solutions for Discrete Lidstone Boundary Value Problems , 2001 .

[37]  Johnny Henderson,et al.  Existence of multiple solutions for second-order discrete boundary value problems , 2002 .

[38]  Christopher S. Goodrich,et al.  On a discrete fractional three-point boundary value problem , 2012 .

[39]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .