Complexes with Sterically Bulky Allyl Ligands: Insights into Structure and Bonding

The allyl anion [C 3 H 5 ] - is often found in combination with other ligands in organometallic complexes. Compounds in which allyl groups are the only or principal type of ligand, however, are often coordinatively unsaturated and prone to decomposition. It is possible to increase the thermal and sometimes oxidative stability of such complexes by adding sterically bulky substituents (e.g., -SiMe 3 ) to the allyl group. Main group, transition metal, and f-element compounds constructed with bulky allyl ligands display a wide range of monomeric, oligomeric, and polymeric structures. Some of these complexes have no counterparts with unsubstituted allyl groups, and others are active polymerization catalysts. Research in this area has served to expand the range of structural types and bonding that can be incorporated into metal allyl chemistry.

[1]  A. Rheingold,et al.  Solvent-resistant structures of base-free lithium and potassium allyl complexes, M[(SiMe3) n C3H5-n ] (M = Li, n = 3; M = K, n = 2) , 2009 .

[2]  A. Rheingold,et al.  Classical versus bridged allyl ligands in magnesium complexes: the role of solvent. , 2009, Journal of the American Chemical Society.

[3]  Xiao Chen,et al.  Comparison of an internally coordinated 2-pentenyllithium with its 4-sila analog. Structure and dynamic behavior: unexpected 13C7Li spin coupling. , 2009, The Journal of organic chemistry.

[4]  M. Kawalec,et al.  Counterion and solvent effects on the anionic polymerization of β-butyrolactone initiated with acetic acid salts , 2008 .

[5]  C. Muryn,et al.  s-Block metal complexes of a bulky, donor-functionalized allyl ligand. , 2008, Chemical communications.

[6]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[7]  Dolly Vijay,et al.  Exploring the size dependence of cyclic and acyclic pi-systems on cation-pi binding. , 2008, Physical chemistry chemical physics : PCCP.

[8]  Felipe García,et al.  Ansa-tris(allyl) complexes of alkali metals: tripodal analogues of cyclopentadienyl and ansa-metallocene ligands. , 2007, Chemical communications.

[9]  Hendrik Zipse,et al.  Cation-pi interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. , 2007, The journal of physical chemistry. B.

[10]  T. Hanusa,et al.  Compositional variations in monomeric trimethylsilylated allyl lanthanide complexes , 2007 .

[11]  W. Brennessel,et al.  Trimethylsilylated Allyl Complexes of the Heavy Alkali Metals, M[1,3-(SiMe3)2C3H3](thf)n (M = K, Cs) , 2007 .

[12]  A. Rheingold,et al.  Threefold Cation−π Bonding in Trimethylsilylated Allyl Complexes , 2007 .

[13]  T. Hanusa,et al.  Prediction of 89Y NMR Chemical Shifts in Organometallic Complexes with Density Functional Theory , 2006 .

[14]  J. Rawson,et al.  Structure, bonding, and paramagnetism in the manganese(II) tris-allyl anions [Mn{ηx-(C3H3R2) 3}]- (R = H, SiMe3; x = 1 or 3): Insight from theory , 2006 .

[15]  T. Hanusa,et al.  Generation of dimethylsilylene and allylidene holmium complexes from trimethylsilylated allyl ligands. , 2006, Journal of the American Chemical Society.

[16]  C. Strohmann,et al.  A monolithiated and its related 1,3-dilithiated allylsilane: syntheses, crystal structures, and reactivity. , 2006, Journal of the American Chemical Society.

[17]  Weiliang Zhu,et al.  Effect of cation–π interaction on NMR: A theoretical investigation on complexes of Li+, Na+, Be2+, and Mg2+ with aromatics , 2006 .

[18]  W. Brennessel,et al.  Allyl complexes of heavy group 13 elements: Structure and bonding in [1,3-(SiMe3)2C3H3]3Ga , 2006 .

[19]  G Narahari Sastry,et al.  Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. , 2005, The journal of physical chemistry. A.

[20]  B. Scott,et al.  Ligand substituent effect observed for ytterbocene 4'-cyano-2,2':6',2' '-terpyridine. , 2005, Inorganic chemistry.

[21]  M. Bochmann,et al.  Chromium allyl and alkyl catalysts for the vinyl polymerization of norbornene and ethylene-norbornene copolymerizations , 2005 .

[22]  B. Scott,et al.  The Role of Alkali Metal Cations in MMA Polymerization Initiated by Neutral and Anionic Allyl Lanthanide Complexes , 2005 .

[23]  M. Voehler,et al.  Trimethylsilylated allyl complexes of nickel. The stabilized bis(pi-allyl)nickel complex [eta3-1,3-(SiMe3)2C3H3]2Ni and its mono(pi-allyl)NiX (X=Br, I) derivatives. , 2005, Journal of the American Chemical Society.

[24]  M. Bochmann,et al.  Reactivity of Silyl-Substituted Allyl Compounds with Group 4, 5, 9, and 10 Metals: Routes to eta^3-Allyls, Alkylidenes, and sec-Alkyl Carbocations , 2005 .

[25]  P. Pregosin,et al.  7Li, 31P, and 1H pulsed gradient spin-echo (PGSE) diffusion NMR spectroscopy and ion pairing: on the temperature dependence of the ion pairing in Li(CPh3), fluorenyllithium, and Li[N(SiMe3)2] amongst other salts. , 2005, Chemistry.

[26]  W. Brennessel,et al.  Metal allyl complexes with bulky ligands: stabilization of homoleptic thorium compounds, [(SiMe3)nC3H(5-n)]4Th (n = 1, 2). , 2004, Journal of the American Chemical Society.

[27]  W. Massa,et al.  Syntheses and Reactions of a Stable 1,2‐Dichloro‐1,2‐diborolane and Aromatic Tetraboranes , 2004 .

[28]  E. Herdtweck,et al.  Studies Related to the Chloro Titanium and Zirconium Complexes with [η5‐Cyclopentadienyldi(silylamido)] Ligands , 2004 .

[29]  S. M. Humphrey,et al.  A manganese(II) allyl complex: synthesis, structure, and magnetic properties of [Li(thf)4][Mn[eta3-(Me3Si)2C3H3][eta1-(Me3Si)2C3H3]2]. , 2004, Angewandte Chemie.

[30]  S. Harder The chemistry of CaII and YbII: astoundingly similar but not equal! , 2004, Angewandte Chemie.

[31]  M. Bochmann,et al.  Sterically Hindered Lanthanide Allyl Complexes and Their Use as Single-Component Catalysts for the Polymerization of Methyl Methacrylate and ε-Caprolactone , 2004 .

[32]  Hua Liu,et al.  Perturbation of conjugation in allylic lithium compounds due to stereochemical control of internal lithium coordination: crystallography, NMR, and calculational studies. , 2004, Journal of the American Chemical Society.

[33]  K. John,et al.  Monomeric f-element chemistry with sterically encumbered allyl ligands , 2003 .

[34]  W. Brennessel,et al.  Homoleptic allyl complexes of chromium with trimethylsilylated ligands. Formation and molecular structure of {[1-(SiMe3)C3H4]2Cr}2, [1,3-(SiMe3)2C3H3]2Cr, and [1,1′,3-(SiMe3)3C3H2]2Cr , 2003 .

[35]  E. Bauer,et al.  Electrochemical and spectroscopic characterization of the novel charge-transfer ground state in diimine complexes of ytterbocene. , 2003, Inorganic chemistry.

[36]  B. Scott,et al.  Toward new paradigms in mixed-valency: ytterbocene-terpyridine charge-transfer complexes. , 2003, Chemical communications.

[37]  M. Bochmann,et al.  New Bulky Allyl Complexes of Lanthanide Metals: Role of Alkali-Metal Cations in Controlling Solid-State and Solution Assemblies in Precatalysts , 2003 .

[38]  M. Bochmann,et al.  Synthesis, Characterization, and Reactivity of ansa-Bis(allyl) Lanthanide Complexes, a New Class of Single-Component Methyl Methacrylate Polymerization Catalysts , 2003 .

[39]  P. Chirik,et al.  Cyclopentadienyl substituent effects on reductive elimination reactions in group 4 metallocenes: kinetics, mechanism, and application to dinitrogen activation. , 2003, Journal of the American Chemical Society.

[40]  Timothy J. Woodman,et al.  Synthesis, Characterization, and Reactivity of Lanthanide Complexes with Bulky Silylallyl Ligands , 2002 .

[41]  B. A. Roberts,et al.  Alkali metal cation-pi interactions stabilized solely by [M{N(SiMe3)(2)}(3)](-) anions (M = Mg or Zn): The competing influence of alkali metal center dot center dot center dot C(Me) agostic interactions , 2002 .

[42]  T. Hanusa New Developments in the Cyclopentadienyl Chemistry of the Alkaline-Earth Metals , 2002 .

[43]  C. Caro Review of metal 1-azaallyl complexes , 2001 .

[44]  V. Young,et al.  Steric stabilization of homoleptic bis(pi-allyl) complexes of chromium(II) and iron(II). , 2001, Journal of the American Chemical Society.

[45]  Y. Eichen,et al.  Synthesis, Characterization, and Catalytic Activities for the Polymerization of Olefins Promoted by Zirconium(III) and Titanium(III) Allyl Complexes , 2001 .

[46]  M. Pink,et al.  Structural characterization of the columnar alkali metal cyclopentadienide [K{C5H2(SiMe3)3-1,2,4}]∞ , 2001 .

[47]  P. Hitchcock,et al.  Synthesis and structural characterisation of new ansa-bis(propene)s and {ansa-bis(allyl)}alkali metal and {ansa-bis(allyl)}transition metal complexes , 2000 .

[48]  P. Jutzi,et al.  Structurally Diverse π-Cyclopentadienyl Complexes of the Main Group Elements , 1999 .

[49]  Y. Kai,et al.  CATALYTIC ACTIVITY OF ALLYL-, AZAALLYL- AND DIAZA-PENTADIENYLLANTHANIDE COMPLEXES FOR POLYMERIZATION OF METHYL METHACRYLATE , 1999 .

[50]  V. Young,et al.  Synthesis and Crystal Structure of the Bis(allyl)calcium Complex [Ca{C3(SiMe3)2H3}2⋅(thf)2] , 1999 .

[51]  P. Hitchcock,et al.  Synthesis and structures of some silylallyl-lithium or -potassium complexes , 1999 .

[52]  Jinhai Wang,et al.  Restricted Stereochemistry of Solvation of Allylic Lithium Compounds: Structural and Dynamic Consequences , 1999 .

[53]  M. Horáček,et al.  ACTIVATION OF THE (TRIMETHYLSILYL)TETRAMETHYLCYCLOPENTADIENYL LIGAND IN THE C5ME4(SIME3)2TICL2/MG SYSTEM, YIELDING INTRAMOLECULAR SI-CH2-MG AND SI-CH2 -TI BONDS. MOLECULAR STRUCTURES OF ETA 5-C5ME4SIME2(MU -CH2MG,MG)ETA 5-C5ME 4(SIME3)TIIII (MU -H)2MG(THF)2 AND ETA 5:ETA 1-C5ME4SIME2CH2(ETA 5-C5ME4( , 1997 .

[54]  Fayang G. Qiu,et al.  Partially Delocalized Allylic Lithium Compounds: Dynamics of Inversion, 1,3 Li Shift, and C−Li Bond, Exchange Influence of the Stereochemistry of Solvation , 1997 .

[55]  M. Lutz,et al.  Silicon-Bridged Alkali-Metal and Alkaline-Earth-Metal Metallocene Complexes. , 1997 .

[56]  T. Hanusa,et al.  Substituent Effects as Probes of Structure and Bonding in Mononuclear Metallocenes , 1997 .

[57]  Fayang G. Qiu,et al.  Observation of a Partially Delocalized Allylic Lithium and the Dynamics of Its 1,3 Lithium Sigmatropic Shift , 1996 .

[58]  A. Darki,et al.  Infrared and nuclear magnetic resonance spectroscopic studies of the structure and dynamics of allylic magnesium compounds , 1996 .

[59]  R. Taube,et al.  XLVIII. Synthese und struktur der ersten neutralen Tris(allyl) lanthanoid-komplexe La(η3-C3H5)3 · 1,5 Dioxan und Nd(η3-C3H5)3 · Dioxan und ihre Eignung als “single site” -Katalysatoren für die stereospezifische Butadienpolymerisation , 1996 .

[60]  J. Cheon,et al.  Chemical vapor deposition of zinc from diallyl zinc precursors , 1994 .

[61]  G. Fraenkel,et al.  Dynamics inside ion pairs. NMR studies of a [1-silylallyl]lithium with a pendant ligand: [1-[[[bis(2-methoxyethyl)amino]methyl]dimethylsilyl]allyl]lithium , 1993 .

[62]  R. D. Ernst,et al.  Open and half-open manganocene chemistry: more associated salts , 1992 .

[63]  P. Schleyer,et al.  exo,exo-[1,3-Bis(trimethylsilyl)allyl]lithium-N,N,N',N'-tetramethylethylenediamine complex: crystal structure and dynamics in solution , 1992 .

[64]  J. Huffman,et al.  Structures of ionic decamethylmetallocenes: crystallographic characterization of bis(pentamethylcyclopentadienyl)calcium and -barium and a comparison with related organolanthanide species , 1990 .

[65]  G. Fraenkel,et al.  Rotational behavior of exo-[1,1,3-tris(trimethylsilyl)allyl]lithium , 1990 .

[66]  G. Fraenkel,et al.  [1-(Trimethylsilyl)allyl]lithium: structure in solution and rotational barriers , 1990 .

[67]  G. Fraenkel,et al.  Dynamics of solvated lithium(+) within exo,exo-[1,3-bis(trimethylsilyl)allyl]lithium N,N,N',N'-tetramethylethylenediamine complex , 1990 .

[68]  S. Sockwell,et al.  Detection of covalency in cyclopentadienyl complexes of the alkaline-earth and f elements: statistical evaluation of structural data , 1990 .

[69]  W. Bauer,et al.  Allyl-lithium: a rapidly equilibrating, unsymmetrical dimer in tetrahydrofuran , 1987 .

[70]  P. Dixneuf,et al.  Electron-rich, hydrocarbon-metal complexes: Synthesis and oxidation properties of bis(η3-allyl) iron complexes containing basic phosphines , 1986 .

[71]  N. W. Murrall,et al.  Asymmetrically bonded π ligands: I. Hinging away from metal of substituted allyls: Syntheses of 1-syn-methyl and -phenyl complexes, and the molecular structures of (η-1-Ph-C3H4)Pd(tmeda)]BF4, [(η-C5H5)Pd(η-1-Ph-C3H4)], and [(phen)Mo(CO)2(NCS)(η-1-Ph-C3H4)] at 185 K , 1986 .

[72]  W. Massa,et al.  Crystal Structure of the η3‐Allyllithium Compound [1,3‐Diphenylallyllithium · Diethyl Ether]n , 1986 .

[73]  David H. Thompson,et al.  The reactions of organic halides with (.pi.-allyl)nickel halide complexes: a mechanistic study , 1985 .

[74]  A. Efraty,et al.  Transformation of .eta.3-allyl to .mu.-.eta.1,.eta.3-allylidene in certain ruthenium complexes , 1982 .

[75]  J. Atwood,et al.  Synthesis and crystallographic characterization of a dimeric alkynide-bridged organolanthanide: [(C5H5)2ErC.ident.CC(CH3)3]2 , 1981 .

[76]  C. Eigenbrot,et al.  Structural criteria for the mode of bonding of organoactinides and -lanthanides and related compounds , 1980 .

[77]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[78]  A. Maki,et al.  Electronic ground states of manganocene and 1,1'-dimethylmanganocene , 1974 .

[79]  J. Brandt,et al.  Übergangsmetall‐Komplexe, II1) Reaktionen von Nickel(0) mit Radikalen , 1973 .

[80]  A. Smith Crystal and molecular structure of bis(cyclopentadienyl)-2,2'-bi-.pi.-allylbis(nickel) (C5H5NiC3H4-C3H4NiC5H5) , 1972 .

[81]  A. Furusaki,et al.  The Crystal Structure of Tetraallyldichromium, Cr2(C3H5)4 , 1969 .

[82]  H. Bönnemann,et al.  cis‐ and trans‐Bis‐(π‐allyl)nickel Systems , 1967 .

[83]  H. Zimmermann,et al.  Allyl‐Transition Metal Systems , 1966 .