Controlling chaos

[1]  Gregory L. Baker Control of the chaotic driven pendulum , 1995 .

[2]  J. Meiss,et al.  Targeting chaotic orbits to the Moon through recurrence , 1995 .

[3]  Kai T. Hansen Alternative method to find orbits in chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[5]  Qu,et al.  Phase effect in taming nonautonomous chaos by weak harmonic perturbations. , 1995, Physical review letters.

[6]  William L. Ditto,et al.  Techniques for the control of chaos , 1995 .

[7]  Ott,et al.  Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Maciej Ogorzalek,et al.  Chaos control: How to avoid chaos or take advantage of it , 1994 .

[9]  Hayes,et al.  Experimental control of chaos for communication. , 1994, Physical review letters.

[10]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[11]  E. Ott,et al.  Controlling chaos in a temporally irregular environment , 1994 .

[12]  Petrov,et al.  Tracking unstable periodic orbits in the Belousov-Zhabotinsky reaction. , 1994, Physical review letters.

[13]  Leon O. Chua,et al.  EXPERIMENTAL SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL , 1994 .

[14]  E. Belbruno Ballistic lunar capture transfers using the fuzzy boundary and solar perturbations: a survey. , 1994 .

[15]  Arkady Pikovsky,et al.  Multistep method for controlling chaos , 1993, Optics & Photonics.

[16]  E. Lorenz,et al.  The essence of chaos , 1993 .

[17]  Guanrong Chen,et al.  From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .

[18]  Kestutis Pyragas Predictable chaos in slightly perturbed unpredictable chaotic systems , 1993 .

[19]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[20]  Ying-Cheng Lai,et al.  How often are chaotic saddles nonhyperbolic , 1993 .

[21]  Grebogi,et al.  Stabilizing chaotic-scattering trajectories using control. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  G. Hu,et al.  Controlling chaos via continuous feedback , 1993 .

[23]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[24]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[25]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[26]  Xiaoning Dong,et al.  Controlling Chua's Circuit , 1993, Chua's Circuit.

[27]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[28]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[29]  Grebogi,et al.  Controlling Hamiltonian chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[31]  Grebogi,et al.  Higher-dimensional targeting. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[33]  P. Lochak,et al.  Canonical perturbation theory via simultaneous approximation , 1992 .

[34]  Roy,et al.  Tracking unstable steady states: Extending the stability regime of a multimode laser system. , 1992, Physical review letters.

[35]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[36]  L. Pecora,et al.  Tracking unstable orbits in experiments. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[37]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[38]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[39]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[40]  Grebogi,et al.  Using the sensitive dependence of chaos (the "butterfly effect") to direct trajectories in an experimental chaotic system. , 1992, Physical review letters.

[41]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[42]  Dressler,et al.  Controlling chaos using time delay coordinates. , 1992, Physical review letters.

[43]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[44]  E. Bradley Taming chaotic circuits , 1992 .

[45]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[46]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[47]  Tamás Tél,et al.  Controlling transient chaos , 1991 .

[48]  Mehta,et al.  Controlling chaos to generate aperiodic orbits. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[49]  Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991, Physical review letters.

[50]  E. Ott,et al.  Controlling Chaotic Dynamical Systems , 1991, 1991 American Control Conference.

[51]  J. Mather Variational construction of orbits of twist diffeomorphisms , 1991 .

[52]  Tomasz Kapitaniak,et al.  Chaotic Oscillations in Mechanical Systems , 1991 .

[53]  Singer,et al.  Controlling a chaotic system. , 1991, Physical review letters.

[54]  V. Gonchar,et al.  Dynamics and stochasticity in a reversible system describing interaction of point vortices with a potential wave , 1991 .

[55]  E. Atlee Jackson,et al.  The entrainment and migration controls of multiple-attractor systems , 1990 .

[56]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[57]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[58]  Wenzel,et al.  Unstable periodic orbits and the symbolic dynamics of the complex Hénon map. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[59]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[60]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[61]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[62]  R. de la Llave,et al.  Accurate strategies for small divisor problems , 1990 .

[63]  P. Grassberger,et al.  On the symbolic dynamics of the Henon map , 1989 .

[64]  J. Stark,et al.  Converse KAM theory for symplectic twist maps , 1989 .

[65]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[66]  Gunaratne,et al.  Chaos beyond onset: A comparison of theory and experiment. , 1989, Physical review letters.

[67]  Jerrold E. Marsden,et al.  Controlling homoclinic orbits , 1989 .

[68]  M. Murison On an efficient and accurate method to integrate restricted three-body orbits , 1989 .

[69]  M. Muldoon Ghosts of order on the frontier of chaos , 1989, 1610.09170.

[70]  J. Meiss,et al.  Periodic orbits for reversible, symplectic mappings , 1989 .

[71]  S. Rice,et al.  Scattering from a classically chaotic repellor , 1989 .

[72]  T. B. Fowler,et al.  Application of stochastic control techniques to chaotic nonlinear systems , 1989 .

[73]  Victor Szebehely Adventures in celestial mechanics: A first course in the theory of orbits , 1989 .

[74]  Cvitanovic,et al.  Topological and metric properties of Hénon-type strange attractors. , 1988, Physical review. A, General physics.

[75]  Grebogi,et al.  Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.

[76]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.

[77]  Grebogi,et al.  Unstable periodic orbits and the dimension of chaotic attractors. , 1987, Physical review. A, General physics.

[78]  Hiroki Hata,et al.  On Partial Dimensions and Spectra of Singularities of Strange Attractors , 1987 .

[79]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[80]  Parlitz,et al.  Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.

[81]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[82]  A. Katok,et al.  Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians , 1987 .

[83]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[84]  Grebogi,et al.  Critical exponent of chaotic transients in nonlinear dynamical systems. , 1986, Physical review letters.

[85]  Badii,et al.  Coexistence of conservative and dissipative behavior in reversible dynamical systems. , 1986, Physical review. A, General physics.

[86]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[87]  R. Easton Trellises formed by stable and unstable manifolds in the plane , 1986 .

[88]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[89]  S. Fishman,et al.  Diffusion in the standard map , 1985 .

[90]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[91]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[92]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[93]  Sidney A. Davis,et al.  Optimization of a multiple lunar-swingby trajectory sequence. , 1984 .

[94]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[95]  Ludger Kaup,et al.  Holomorphic Functions of Several Variables , 1983 .

[96]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[97]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[98]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[99]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[100]  Y. Ueda Randomly transitional phenomena in the system governed by Duffing's equation , 1978 .

[101]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[102]  O. Rössler An equation for continuous chaos , 1976 .

[103]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[104]  Rufus Bowen,et al.  On axiom A diffeomorphisms , 1975 .

[105]  C. Froeschlé,et al.  Numerical Study of a Four-Dimensional Mapping. II. , 1973 .

[106]  R. Bowen Periodic points and measures for Axiom $A$ diffeomorphisms , 1971 .

[107]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[108]  W. Brogan Modern Control Theory , 1971 .

[109]  C. C. Conley,et al.  Low Energy Transit Orbits in the Restricted Three-Body Problems , 1968 .

[110]  Jay C. Hsu,et al.  Modern Control Principles and Applications , 1968 .

[111]  S. Smale Differentiable dynamical systems , 1967 .

[112]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[113]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[114]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[115]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[116]  G. Hill Researches in the Lunar Theory , 1878 .