On Orientation Sensitive Defuzzification Functionals

The aim of the article is to investigate defuzzification functionals in the theory of Ordered Fuzzy Numbers (OFN). The model of OFN was introduced in 2002 to overcome drawbacks of classical (convex) fuzzy numbers. Each OFN is equipped with an additional feature – the orientation. New forms of defuzzification functionals are proposed which are sensitive to the orientation change.

[1]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[2]  Piotr Prokopowicz,et al.  Fuzziness – Representation of Dynamic Changes by Ordered Fuzzy Numbers , 2009 .

[3]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[4]  Dominik Slezak,et al.  Calculus with Fuzzy Numbers , 2004, IMTCI.

[5]  W. Kosiński,et al.  Algebra liczb rozmytych , 2004 .

[6]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[7]  E. Kaucher Interval Analysis in the Extended Interval Space IR , 1980 .

[8]  Witold Kosiński,et al.  On fuzzy number calculus , 2006 .

[9]  Witold Kosinski,et al.  Defuzzification and implication within ordered fuzzy numbers , 2010, International Conference on Fuzzy Systems.

[10]  José Valente de Oliveira,et al.  A set-theoretical defuzzification method , 1995, Fuzzy Sets Syst..

[11]  J. Buckley,et al.  An Introduction to Fuzzy Logic and Fuzzy Sets , 2002 .

[12]  Etienne E. Kerre,et al.  Defuzzification: criteria and classification , 1999, Fuzzy Sets Syst..

[13]  Esfandiar Eslami,et al.  Advances in soft computing: an introduction to fuzzy logic and fuzzy sets , 2002 .

[14]  Rudolf Kruse,et al.  Neuro-Fuzzy Systems , 1998 .

[15]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[16]  Gaël Dias,et al.  Recognizing Textual Entailment by Generality Using Informative Asymmetric Measures and Multiword Unit Identification to Summarize Ephemeral Clusters , 2011, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[17]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[18]  Janusz Kacprzyk,et al.  Views on Fuzzy Sets and Systems from Different Perspectives , 2009 .

[19]  Thomas A. Runkler,et al.  Selection of appropriate defuzzification methods using application specific properties , 1997, IEEE Trans. Fuzzy Syst..

[20]  Dominik Ślęzak,et al.  Ordered fuzzy numbers , 2003 .

[21]  Piotr Prokopowicz,et al.  Defuzzification Functionals of Ordered Fuzzy Numbers , 2013, IEEE Transactions on Fuzzy Systems.

[22]  Dominik Ślęzak,et al.  On Algebraic Operations on Fuzzy Reals , 2003 .

[23]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[24]  Witold Kosiński,et al.  Fuzzy calculus with aplications , 2013 .

[25]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[26]  Witold Kosinski On Defuzzyfication of Ordered Fuzzy Numbers , 2004, ICAISC.

[27]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[28]  Zbigniew Michalewicz,et al.  Intelligent Media Technology for Communicative Intelligence , 2008 .

[29]  Jean J. Saade,et al.  A unifying approach to defuzzification and comparison of the outputs of fuzzy controllers , 1996, IEEE Trans. Fuzzy Syst..

[30]  George J. Klir,et al.  Fuzzy arithmetic with requisite constraints , 1997, Fuzzy Sets Syst..

[31]  Jörg H. Siekmann,et al.  Artificial Intelligence and Soft Computing - ICAISC 2004 , 2004, Lecture Notes in Computer Science.

[32]  Dominik Slezak,et al.  Algebraic Operations on Fuzzy Numbers , 2003, IIS.