Spark plasma sintering of structure‐tailored ultrahigh‐temperature components: First step to complex net shaping

[1]  E. Olevsky,et al.  Current understanding and future research directions at the onset of the next century of sintering science and technology , 2017 .

[2]  E. Olevsky,et al.  Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation , 2017 .

[3]  A. Weibel,et al.  A sacrificial material approach for spark plasma sintering of complex shapes , 2016 .

[4]  Christopher D. Haines,et al.  Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties , 2016, Materials.

[5]  E. Sani,et al.  Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering , 2016, Materials.

[6]  E. Olevsky,et al.  Densification of zirconium nitride by spark plasma sintering and high voltage electric discharge consolidation: A comparative analysis , 2015 .

[7]  E. Olevsky,et al.  Contribution of Electric Current into Densification Kinetics During Spark Plasma Sintering of Conductive Powder , 2015 .

[8]  E. Olevsky,et al.  Advancement of Tooling for Spark Plasma Sintering , 2015 .

[9]  Christopher D. Haines,et al.  Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup , 2015 .

[10]  Christopher D. Haines,et al.  Spark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties , 2015, Materials.

[11]  G. Antou,et al.  New approach of the evolution of densification mechanisms during Spark Plasma Sintering: Application to zirconium (oxy-)carbide ceramics , 2015 .

[12]  E. Olevsky,et al.  Spark plasma sintering of agglomerated vanadium carbide powder , 2015 .

[13]  O. Graeve,et al.  Mechanisms of pore formation in high-temperature carbides: Case study of TaC prepared by spark plasma sintering , 2015 .

[14]  O. Guillon,et al.  Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments , 2014 .

[15]  Y. Katoh,et al.  Properties of Zirconium Carbide for Nuclear Fuel Applications , 2013, Comprehensive Nuclear Materials.

[16]  E. Olevsky,et al.  Spark-plasma sintering efficiency control by inter-particle contact area growth: A viewpoint , 2013 .

[17]  Robin W. Grimes,et al.  Opportunities for Advanced Ceramics and Composites in the Nuclear Sector , 2013 .

[18]  Robert P. Aune,et al.  Temperature-dependent mechanical and long crack behavior of zirconium diboride–silicon carbide composite , 2012 .

[19]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability , 2012 .

[20]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[21]  J. Allen,et al.  Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique , 2012 .

[22]  E. Olevsky,et al.  Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry , 2012, Journal of Materials Science.

[23]  M. Nygren,et al.  Improvement of the Spark-Plasma-Sintering Kinetics of ZrC by High-Energy Ball-Milling , 2012 .

[24]  E. Olevsky,et al.  Spark plasma sintering of tantalum carbide , 2010 .

[25]  Lai-fei Cheng,et al.  FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation , 2010 .

[26]  E. Olevsky,et al.  Fundamentals of Spark-Plasma Sintering: Applications to Net-Shaping of High Strength Temperature Resistant Components , 2010 .

[27]  Jin-Hyoung Park,et al.  The Development of an Electroconductive SiC-ZrB 2 Composite through Spark Plasma Sintering under Argon Atmosphere , 2010 .

[28]  A. Maître,et al.  A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders , 2010 .

[29]  C. Garnier,et al.  Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods , 2009 .

[30]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[31]  G. Antou,et al.  Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions , 2009 .

[32]  M. Nygren,et al.  Spark plasma sintering and mechanical behaviour of ZrC-based composites , 2008 .

[33]  G. Hilmas,et al.  Thermophysical Properties of ZrB2-Based Ceramics , 2008 .

[34]  G. Vasudevamurthy,et al.  Laboratory production of zirconium carbide compacts for use in inert matrix fuels , 2008 .

[35]  S. Hong,et al.  Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering , 2006 .

[36]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[37]  M. Tokita Industrial applications forfunctionally graded materials fabricated by spark plasmasintering (SPS) systems , 2000, Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology.

[38]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[39]  M. Ashby,et al.  Hot isostatic pressing diagrams : new developments , 1985 .

[40]  K. Niihara,et al.  Synthesis of nanosized zirconium carbide powders by a combinational method of sol–gel and pulse current heating , 2014 .

[41]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[42]  M. Tokita Industrial applications of advanced spark plasma sintering , 2006 .

[43]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .