Glacier and lake-level variations in west-central Europe over the last 3500 years

On the basis of glacier and lake-level records, this paper attempts, for the first time, a comparison between high-resolution palaeohydrological and palaeoglaciological data in west-central Europe over the past 3500 years. A data set of tree-ring width, radiocarbon and archaeological data, in addition to historical sources, were used to reconstruct fluctuations of the Great Aletsch, the Gorner and the Lower Grindelwald glaciers in the Swiss Alps. The three ice-streams experienced nearly synchronous advances at c. 1000-600 BC and AD 500-600, 800-900, 1100-1200 and 1300-1860. These glacier fluctuations show strong correspondence with lake-level variations reconstructed in eastern France (Jura mountains and Pre-Alps) and on the Swiss Plateau. This supports the hypothesis of climatically driven fluctuations. Historical data available for the period since AD 1550 reveal, in detail, various meteorological conditions behind the successive glacier advances. However, in agreement with the general trend shown by the historical data, the synchroneity between glacier advances and periods of higher lake level suggests the impact of general winter cooling and an increase in summer moisture as responsible for reinforced feeding of both glaciers and lakes in west-central Europe over the past 3500 years. Finally, a comparison between the Great Aletsch glacier and the residual 14C records supports the hypothesis that variations in solar activity were a major forcing factor of climatic oscillations in west-central Europe during the late Holocene.

[1]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[2]  The Little Ice Age , 1989 .

[3]  M. Kuhn Energieaustausch Atmosphäre-Schnee und Eis , 1990 .

[4]  H. Wanner,et al.  INTERANNUAL TO CENTURY SCALE CLIMATE VARIABILITY IN THE EUROPEAN ALPS , 2000 .

[5]  V. Dergachev,et al.  The ~ 2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14 C data over the last 8000 years , 2002 .

[6]  W. Haeberli Into the second century of worldwide glacier monitoring : prospects and strategies : a contribution to the International Hydrological Programme (IHP) and the Global Environment Monitoring System (GEMS) , 1998 .

[7]  J. Guiot,et al.  Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, Lake Annecy, French Pre-Alps , 2003 .

[8]  C. Schlüchter,et al.  The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps , 2001 .

[9]  K. Nicolussi,et al.  Discovery of early Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria , 2000 .

[10]  Y. Billaud,et al.  L'archéologie subaquatique dans les lacs Alpins Français , 1997 .

[11]  R. Battarbee Palaeohydrology as reflected in lake-level changes as climatic evidence for Holocene times , 1998 .

[12]  J. Hurrell Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation , 1995, Science.

[13]  Henrik Lundstedt,et al.  Solar Wind Variations Related to Fluctuations of the North Atlantic Oscillation , 2002 .

[14]  Frank Paul,et al.  The new Swiss glacier inventory 2000 : application of remote sensing and GIS , 2003 .

[15]  S. Dahl,et al.  The ‘Little Ice Age’ – only temperature? , 2003 .

[16]  Bernd Kromer,et al.  Persistent Solar Influence on North Atlantic Climate During the Holocene , 2001, Science.

[17]  H. J. Zumbühl,et al.  Glacier Fluctuations in the Western Swiss and French Alps in the 16th Century , 1999 .

[18]  W. Tinner,et al.  Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps , 1998 .

[19]  W. Haeberli ACCELERATED GLACIER AND PERMAFROST CHANGES IN THE ALPS , 1994 .

[20]  M. Magny,et al.  Late holocene level fluctuations of the Lake Ilay in Jura, France: sediment and mollusc evidence and climatic implications , 1995 .

[21]  S. Hostetler,et al.  Paleoclimatic implications of the high stand of Lake Lahontan derived from models of evaporation and lake level , 1990 .

[22]  M. Magny,et al.  Solar Influences on Holocene Climatic Changes Illustrated by Correlations between Past Lake-Level Fluctuations and the Atmospheric 14C Record , 1993, Quaternary Research.

[23]  A. Lotter,et al.  Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD , 2003 .

[24]  J. Hurrell,et al.  DECADAL VARIATIONS IN CLIMATE ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION , 1997 .

[25]  P. Ribera,et al.  Changes in the relationship NAO–Northern hemisphere temperature due to solar activity , 2003 .

[26]  A. Lotter,et al.  A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps , 2003 .

[27]  R. Finkel,et al.  Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records , 2000, Nature.

[28]  J. Beer Long-term indirect indices of solar variability , 2000 .

[29]  E. Bering,et al.  The Role of the Sun in Climate Change , 1997 .

[30]  G. Denton,et al.  Holocene Climatic Variations—Their Pattern and Possible Cause , 1973, Quaternary Research.

[31]  J. Haas Pollen and plant macrofossil evidence of vegetation change - at Wallisellen-Langachermoos (Switzerland) - during the Mesolithic-Neolithic transition - 8500 to 6500 years ago , 1996 .

[32]  M. Magny Holocene lake-level fluctuations in Jura and the northern subalpine ranges , 2008 .

[33]  John A. Eddy,et al.  The Maunder Minimum , 1976, Science.

[34]  M. Aellen,et al.  Langjährige Massenbilanzreihen von Gletschern in der Schweiz , 1996 .

[35]  J. Plicht,et al.  Reduced solar activity as a trigger for the start of the Younger Dryas , 2000 .

[36]  S. Harrison,et al.  European lakes as palaeohydrological and palaeoclimatic indicators , 1993 .

[37]  M. Provansal,et al.  Geomorphological evidence for fluvial change during the Roman period in the lower Rhone valley (southern France) , 2001 .

[38]  J. Jouzel,et al.  The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland , 1998 .

[39]  T. Fichefet,et al.  The 8.2 kyr BP event simulated by a Global Atmosphere—Sea‐Ice—Ocean Model , 2001 .

[40]  H. Wanner,et al.  Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704) , 1995 .

[41]  Johannes Oerlemans,et al.  Glaciers and climate change , 2001 .

[42]  M. Beniston Mountain Environments in Changing Climates , 1994 .

[43]  B. van Geel,et al.  Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP , 1996 .

[44]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[45]  Christoph Schmutz,et al.  Low frequency variability of athmospheric circulation over Europe between 1785 and 1994 , 1998 .

[46]  P. Germann,et al.  Treeline Fluctuations Recorded for 12,500 Years by Soil Profiles, Pollen, and Plant Macrofossils in the Central Swiss Alps , 1996 .

[47]  P. Müller Parametrisierung der Gletscher-Klima-Beziehung für die Praxis , 1987 .

[48]  H. Zumbühl Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts : ein Beitrag zur Gletschergeschichte und Erforschung des Alpenraumes , 1980 .

[49]  W. Haeberli,et al.  Alpine Glacier Mass Changes During the Past Two Millennia , 2003 .

[50]  M. Magny Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements , 2004 .

[51]  M. Magny Holocene fluctuations of lake levels in the French Jura and sub-Alpine ranges, and their implications for past general circulation patterns , 1993 .

[52]  J. Guiot,et al.  Quantitative Reconstruction of Younger Dryas to Mid-Holocene Paleoclimates at Le Locle, Swiss Jura, Using Pollen and Lake-Level Data , 2001, Quaternary Research.

[53]  H. Holzhauser Dendrochronologische Auswertung fossiler Hölzer zur Rekonstruktion der nacheiszeitlichen Gletschergeschichte , 2002 .

[54]  P. Jones,et al.  Monthly mean pressure reconstruction for the Late Maunder Minimum Period (AD 1675-1715) , 2000 .

[55]  C. Pfister,et al.  Das Klima der Schweiz von 1525-1860 und seine Bedeutung in der Geschichte von Bevolkerung und Landwirtschaft , 1987 .

[56]  M. Hoelzle,et al.  Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps , 1995, Annals of Glaciology.

[57]  Sandy P. Harrison,et al.  Reconstruction of Holocene Precipitation Patterns in Europe Using Pollen and Lake-Level Data , 1993, Quaternary Research.

[58]  H. Wanner,et al.  50 years of Alpine Weather Statistics (AWS) , 1998 .

[59]  S. Bortenschlager Waldgrenz- und Klimaschwankungen im pollenanalytischen Bild des Gurgler Rotmooses , 1970 .

[60]  M. Hoelzle,et al.  Secular glacier mass balances derived from cumulative glacier length changes , 2003 .