Multivariate piecewise polynomials
暂无分享,去创建一个
[1] W. Dahmen,et al. Approximation theory VII , 1994 .
[2] R. DeVore,et al. Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .
[3] Larry L. Schumaker,et al. The generic dimension of the space of C 1 splines of degree d ≥8 on tetrahedral decompositions , 1993 .
[4] R. Jia,et al. Approximation by multiinteger translates of functions having global support , 1993 .
[5] C. D. Boor,et al. A sharp upper bound on the approximation order of smooth bivariate PP functions , 1993 .
[6] C. D. Boor,et al. Box splines , 1993 .
[7] Carl de Boor,et al. Approximation Order without Quasi-Interpolants , 1993 .
[8] C. D. Boor,et al. Fourier analysis of the approximation power of principal shift-invariant spaces , 1992 .
[9] C. Micchelli,et al. Blossoming begets B -spline bases built better by B -patches , 1992 .
[10] H. Seidel. Representing piecewise polynomials as linear combinations of multivariate B-splines , 1992 .
[11] Larry L. Schumaker,et al. On dimension and existence of local bases for multivariate spline spaces , 1992 .
[12] Amos Ron,et al. The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function , 1992 .
[13] L. Schumaker,et al. The L 2 -approximation Orders of Principal Shift-invariant Spaces Generated by a Radial Basis Function X1. Introduction Numerical Methods of Approximation Theory 1 , 1992 .
[14] Ronald A. DeVore,et al. The Structure of Nitely Generated Shift-invariant Spaces in L 2 (ir D ) , 1992 .
[15] R. DeVore,et al. The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .
[16] R. Beatson,et al. Quasi-interpolation in the Absence of Polynomial Reproduction , 1992 .
[17] R. Jia. Approximation by Multivariate Splines: an Application of Boolean Methods , 1992 .
[18] H. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the de boor algorithm for polynomials over triangles , 1991 .
[19] Allan Pinkus,et al. Progress in Approximation Theory , 1991 .
[20] Lauren L. Rose,et al. A dimension series for multivariate splines , 1991, Discret. Comput. Geom..
[21] A. Ron. A characterization of the approximation order for multivariate spline spaces , 1991 .
[22] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[23] C. Micchelli,et al. Computation of Curves and Surfaces , 1990 .
[24] C. Chui,et al. Approximation Theory VI , 1990 .
[25] A. Ron,et al. Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems , 1990 .
[26] A. Le Méhauté,et al. A Finite Element Approach to Surface Reconstruction , 1990 .
[27] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[28] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[29] L. Billera. The algebra of continuous piecewise polynomials , 1989 .
[30] Tom Lyche,et al. Mathematical methods in computer aided geometric design , 1989 .
[31] L. Billera,et al. Gro¨bner basis methods for multivariate splines , 1989 .
[32] Dieter Lasser,et al. Grundlagen der geometrischen Datenverarbeitung , 1989 .
[33] C. Micchelli,et al. On multivariate -splines , 1989 .
[34] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[35] Klaus Höllig,et al. Approximation power of smooth bivariate PP functions , 1988 .
[36] L. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .
[37] Larry L. Schumaker,et al. Topics in Multivariate Approximation , 1987 .
[38] Thomas A. Grandine,et al. The computational cost of simplex spline functions , 1987 .
[39] Charles K. Chui,et al. Cardinal Interpolation by Multivariate Splines , 1987 .
[40] Charles K. Chui,et al. On multivariate Vertex splines and Applications , 1987, Topics in Multivariate Approximation.
[41] Larry L. Schumaker,et al. A Bibliography of multivariate Approximation , 1987, Topics in Multivariate Approximation.
[42] Norbert Luscher,et al. Die Bernstein-Bézier-Technik in der Methode der finiten Elemente , 1987 .
[43] Gerald Farin,et al. Geometric modeling : algorithms and new trends , 1987 .
[44] C. D. Boor,et al. B-Form Basics. , 1986 .
[45] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[46] Ronald A. DeVore,et al. Partitions of Unity and Approximation , 1985 .
[47] Wolfgang Dahmen,et al. Some results on box splines , 1984 .
[48] Wolfgang Böhm,et al. A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..
[49] C. Chui,et al. Approximation Theory IV , 1984 .
[50] Larry L. Schumaker,et al. Bounds on the dimension of spaces of multivariate piecewise polynomials , 1984 .
[51] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[52] Ron Goldman,et al. Subdivision algorithms for Bézier triangles , 1983 .
[53] Klaus Höllig,et al. Approximation order from bivariate ¹-cubics: a counterexample , 1983 .
[54] Ronald A. DeVore,et al. Approximation by smooth multivariate splines , 1983 .
[55] C. Micchelli,et al. Recent Progress in multivariate splines , 1983 .
[56] W. Schempp,et al. Multivariate Approximation Theory IV , 1989 .
[57] C. Micchelli,et al. On the Linear Independence of Multivariate B-Splines, I. Triangulations of Simploids , 1982 .
[58] Klaus Höllig,et al. Recurrence Relations for Multivariate B-Splines. , 1982 .
[59] M. Powell,et al. Approximation theory and methods , 1984 .
[60] S. L. Lee,et al. Spline approximation operators of Bernstein-Schoenberg type in one and two variables , 1981 .
[61] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[62] Wolfgang Dahmen,et al. Multivariate B-Splines — Recurrence Relations and Linear Combinations of Truncated Powers , 1979 .
[63] L. Schumaker. On the Dimension of Spaces Of Piecewise Polynomials in Two Variables , 1979 .
[64] I. Faux,et al. Computational Geometry for Design and Manufacture , 1979 .
[65] Charles A Micchelli,et al. A Constructive Approach to Kergin Interpolation in R(k). , 1978 .
[66] C. R. Deboor,et al. A practical guide to splines , 1978 .
[67] C. Chui,et al. Approximation Theory II , 1976 .
[68] C. D. Boor,et al. Splines as linear combinations of B-splines. A Survey , 1976 .
[69] Gilbert Strang,et al. The dimension of piecewise polynomial spaces, and one-sided approximation , 1974 .
[70] G. Strang. Piecewise polynomials and the finite element method , 1973 .
[71] A. Ženíšek. Polynomial approximation on tetrahedrons in the finite element method , 1973 .
[72] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[73] A. Ženíšek. Interpolation polynomials on the triangle , 1970 .
[74] Plerre Bézier. Emploi des machines a commande numérique , 1970 .
[75] I. J. Schoenberg,et al. Cardinal interpolation and spline functions , 1969 .
[76] T. J. Rivlin,et al. Approximation of Functions , 1967 .
[77] I. J. Schoenberg,et al. On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .
[78] W. E. Milne. Numerical Solution of Differential Equations , 1953 .
[79] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .
[80] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations , 1943 .
[81] N. E. Nörlund. Vorlesungen über Differenzenrechnung , 1924 .