Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland

Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3–V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.

[1]  Kaviyarasi Renu,et al.  The Microbiota, The Malarial Parasite, and The Mosquito [MMM] - A three-sided relationship. , 2023, Molecular and biochemical parasitology.

[2]  J. F. Medeiros,et al.  Assessment of antibiotic treatment on Anopheles darlingi survival and susceptibility to Plasmodium vivax , 2022, Frontiers in Microbiology.

[3]  L. Djogbénou,et al.  Malaria-Transmitting Vectors Microbiota: Overview and Interactions With Anopheles Mosquito Biology , 2022, Frontiers in Microbiology.

[4]  Benjamin D. Kaehler,et al.  RESCRIPt: Reproducible sequence taxonomy reference database management , 2021, PLoS Comput. Biol..

[5]  E. Muturi,et al.  Resistance to permethrin alters the gut microbiota of Aedes aegypti , 2021, Scientific Reports.

[6]  M. Strand,et al.  Diet–Microbiota Interactions Alter Mosquito Development , 2021, Frontiers in Microbiology.

[7]  G. E. M. Ferreira,et al.  Diversity of Culturable Bacteria Isolated From the Feces of Wild Anopheles darlingi (Diptera: Culicidae) Mosquitoes From the Brazilian Amazon , 2021, Journal of Medical Entomology.

[8]  W. Tadei,et al.  Culturable bacteria associated with Anopheles darlingi and their paratransgenesis potential , 2021, Malaria journal.

[9]  Benjamin D. Kaehler,et al.  RESCRIPt: Reproducible sequence taxonomy reference database management , 2020, bioRxiv.

[10]  F. Tripet,et al.  Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies , 2020, Tropical medicine and infectious disease.

[11]  Andrea Arévalo-Cortés,et al.  The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin , 2020, Insects.

[12]  G. Christophides,et al.  Antibiotic Treatment in Anopheles coluzzii Affects Carbon and Nitrogen Metabolism , 2020, Pathogens.

[13]  M. Sallum,et al.  Bacterial diversity associated with the abdomens of naturally Plasmodium-infected and non-infected Nyssorhynchus darlingi , 2020, BMC Microbiology.

[14]  Jingwen Wang,et al.  Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection , 2020, Parasites & Vectors.

[15]  S. Massart,et al.  Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso , 2019, Molecular Biology Reports.

[16]  P. Rossi,et al.  Asaia Activates Immune Genes in Mosquito Eliciting an Anti-Plasmodium Response: Implications in Malaria Control , 2019, Front. Genet..

[17]  Punita Sharma,et al.  Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi , 2019, bioRxiv.

[18]  J. Conn,et al.  Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon , 2019, Parasites & Vectors.

[19]  M. Moreno,et al.  Brazil's first free-mating laboratory colony of Nyssorhynchus darlingi. , 2019, Revista da Sociedade Brasileira de Medicina Tropical.

[20]  J. Vega-Rodríguez,et al.  A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses , 2019, Front. Microbiol..

[21]  J. Ramirez,et al.  Mosquito Midgut Prostaglandin Release Establishes Systemic Immune Priming , 2019, iScience.

[22]  B. Brooke,et al.  The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) , 2019, Scientific Reports.

[23]  J. Conn,et al.  Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities , 2019, PLoS neglected tropical diseases.

[24]  H. Tekie,et al.  Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic areas of Ethiopia , 2019, BMC Microbiology.

[25]  W. Tadei,et al.  Characterization of Bacterial Communities in Breeding Waters of Anopheles darlingi in Manaus in the Amazon Basin Malaria-Endemic Area , 2019, Microbial Ecology.

[26]  Michael Gerth,et al.  Is Anopheles gambiae a Natural Host of Wolbachia? , 2018, mBio.

[27]  I. Ricci,et al.  Genome Reduction in the Mosquito Symbiont Asaia , 2018, Genome biology and evolution.

[28]  E. Muturi,et al.  Host blood‐meal source has a strong impact on gut microbiota of Aedes aegypti , 2018, FEMS microbiology ecology.

[29]  P. Rossi,et al.  Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing , 2018, BMC Microbiology.

[30]  D. Serre,et al.  Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors , 2018, Microbiome.

[31]  Guofa Zhou,et al.  Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development , 2018, Molecular ecology.

[32]  F. Simard,et al.  Natural Wolbachia infections are common in the major malaria vectors in Central Africa , 2018, bioRxiv.

[33]  C. Valiente Moro,et al.  The mosquito holobiont: fresh insight into mosquito-microbiota interactions , 2018, Microbiome.

[34]  Jingwen Wang,et al.  PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis , 2018, PLoS pathogens.

[35]  A. Lenhart,et al.  Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors , 2018, Scientific Reports.

[36]  A. Lenhart,et al.  Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors , 2018, Scientific Reports.

[37]  E. Mongodin,et al.  Changes in the microbiota cause genetically modified Anopheles to spread in a population , 2017, Science.

[38]  G. Christophides,et al.  The Peptidoglycan Recognition Proteins PGRPLA and PGRPLB Regulate Anopheles Immunity to Bacteria and Affect Infection by Plasmodium , 2017, Journal of Innate Immunity.

[39]  G. Christophides,et al.  Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes , 2017, PLoS pathogens.

[40]  E. Muturi,et al.  Comparative analysis of gut microbiota of mosquito communities in central Illinois , 2017, PLoS neglected tropical diseases.

[41]  S. Manguin,et al.  Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam , 2016, Front. Microbiol..

[42]  G. Christophides,et al.  Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana , 2016, PloS one.

[43]  R. Christen,et al.  Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia , 2016, Front. Microbiol..

[44]  D. Lampe,et al.  Inhibition of Plasmodium berghei Development in Mosquitoes by Effector Proteins Secreted from Asaia sp. Bacteria Using a Novel Native Secretion Signal , 2015, PloS one.

[45]  J. Conn,et al.  Implications for changes in Anophelesdarlingi biting behaviour in three communities in the peri-Iquitos region of Amazonian Peru , 2015, Malaria Journal.

[46]  J. Wasmuth,et al.  Does the Arthropod Microbiota Impact the Establishment of Vector-Borne Diseases in Mammalian Hosts? , 2015, PLoS pathogens.

[47]  S. Bennett,et al.  RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi , 2015, Front. Microbiol..

[48]  E. Walker,et al.  Elizabethkingia anophelis: Molecular Manipulation and Interactions with Mosquito Hosts , 2015, Applied and Environmental Microbiology.

[49]  R. Christen,et al.  Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[50]  R. Chandra,et al.  Exploring Anopheles gut bacteria for Plasmodium blocking activity. , 2014, Environmental microbiology.

[51]  Mark R. Brown,et al.  Mosquitoes rely on their gut microbiota for development , 2014, Molecular ecology.

[52]  S. Lata,et al.  Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies , 2014, Parasites & Vectors.

[53]  E. Winzeler,et al.  Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax , 2014, The American journal of tropical medicine and hygiene.

[54]  S. Manguin Anopheles mosquitoes : New insights into malaria vectors , 2013 .

[55]  B. Nelson,et al.  Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity , 2013, Scientific Reports.

[56]  M. Lacerda,et al.  The Role of Reactive Oxygen Species in Anopheles aquasalis Response to Plasmodium vivax Infection , 2013, PloS one.

[57]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[58]  C. Mbogo,et al.  Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya , 2012, Molecular ecology.

[59]  A. Klindworth,et al.  Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies , 2012, Nucleic acids research.

[60]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[61]  T. Fukatsu,et al.  Symbiont-mediated insecticide resistance , 2012, Proceedings of the National Academy of Sciences.

[62]  D. Daffonchio,et al.  Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) , 2012, BMC Microbiology.

[63]  D. Daffonchio,et al.  Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts , 2012, BMC Microbiology.

[64]  Ying Wang,et al.  Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya , 2011, PloS one.

[65]  Hélène Hiwat,et al.  Ecology of Anopheles darlingi Root with respect to vector importance: a review , 2011, Parasites & Vectors.

[66]  M. A. Berbert-Molina,et al.  Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.) , 2011, Parasites & Vectors.

[67]  D. Lampe,et al.  Secretion of Anti-Plasmodium Effector Proteins from a Natural Pantoea agglomerans Isolate by Using PelB and HlyA Secretion Signals , 2011, Applied and Environmental Microbiology.

[68]  G. Dimopoulos,et al.  Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae , 2011, Science.

[69]  D. Daffonchio,et al.  Mosquito-Bacteria Symbiosis: The Case of Anopheles gambiae and Asaia , 2010, Microbial Ecology.

[70]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[71]  D. Daffonchio,et al.  Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. , 2009, Environmental microbiology.

[72]  G. Glass,et al.  Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. , 2009, The American journal of tropical medicine and hygiene.

[73]  G. Dimopoulos,et al.  Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites , 2009, PLoS pathogens.

[74]  L. Kramer,et al.  Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector , 2007, Proceedings of the National Academy of Sciences.

[75]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[76]  W. Maier,et al.  Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[77]  M. Sallum,et al.  Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) associated with Nyssorhynchus braziliensis and Nyssorhynchus darlingi (Diptera: Culicidae) , 2020 .

[78]  D. Serre,et al.  Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus. , 2019, Acta tropica.

[79]  A. James,et al.  16S rRNA Gene Sequences from Bacteria Associated with Adult Anopheles darlingi (Diptera: Culicidae) Mosquitoes , 2008, Journal of medical entomology.

[80]  D. Daffonchio,et al.  Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. , 2008, Advances in experimental medicine and biology.

[81]  O. P. Forattini,et al.  Principais mosquitos de importância sanitária no Brasil , 1995 .

[82]  Rotraut A. G. B. Consoli,et al.  Principais mosquitos de importância sanitária no Brasil , 1994 .