Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion

[1]  Bong Hoon Kim,et al.  Directed self-assembly of block copolymers for next generation nanolithography , 2013 .

[2]  Zhong Jin,et al.  Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning , 2013, Nature Communications.

[3]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[4]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[5]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[6]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[7]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[8]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[9]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[10]  S. Wind,et al.  Selective placement of DNA origami on substrates patterned by nanoimprint lithography , 2011 .

[11]  Yonghan Roh,et al.  Coverage control of DNA crystals grown by silica assistance. , 2011, Angewandte Chemie.

[12]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[13]  Shichao Zhao,et al.  Molecular lithography through DNA-mediated etching and masking of SiO2. , 2011, Journal of the American Chemical Society.

[14]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[15]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[16]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[17]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[18]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[19]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[20]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[21]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[22]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[23]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[24]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[25]  S. Murata,et al.  Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. , 2009, Angewandte Chemie.

[26]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[27]  C. Mao,et al.  Surface-mediated DNA self-assembly. , 2009, Journal of the American Chemical Society.

[28]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[29]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[30]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[31]  E. Le Cam,et al.  Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[33]  E. Le Cam,et al.  Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: Influence of the surface friction , 2005, Biopolymers.

[34]  Stéphane Fusil,et al.  Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. , 2003, Biophysical journal.

[35]  S. Fusil,et al.  Reversible Binding of DNA on NiCl2-Treated Mica by Varying the Ionic Strength , 2003 .

[36]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[37]  M. Brigatti,et al.  Crystal chemistry of Mg-, Fe-bearing muscovites-2M1 , 1998 .

[38]  P. Hansma,et al.  Reversible Binding of DNA to Mica for AFM Imaging , 1996 .

[39]  H. Hansma,et al.  DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. , 1996, Biophysical journal.

[40]  I. Rouzina,et al.  Influence of Ligand Spatial Organization on Competitive Electrostatic Binding to DNA , 1996 .

[41]  V. Bloomfield,et al.  Competitive Electrostatic Binding of Charged Ligands to Polyelectrolytes: Planar and Cylindrical Geometries , 1996 .

[42]  Z. Shao,et al.  Biological atomic force microscopy: what is achieved and what is needed , 1996 .

[43]  Helen G. Hansma,et al.  Adsorption of DNA to mica, silylated mica, and minerals : characterization by atomic force microscopy , 1995 .

[44]  H. Hansma,et al.  Motion and enzymatic degradation of DNA in the atomic force microscope. , 1994, Biophysical journal.

[45]  S. W. Bailey Review of Cation Ordering in Micas , 1984 .

[46]  C. Burnham,et al.  The crystal structure of 3Τ muscovite , 1967 .

[47]  N. Güven,et al.  The crystal structure of 3Tmuscovite , 1967 .

[48]  N. Güven,et al.  The Crystal Structure of 3T Muscovite , 1967 .