SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds

An open source tool named SimpleTree, capable of modelling highly accurate cylindrical tree models from terrestrial laser scan point clouds, is presented and evaluated. All important functionalities, accessible in the software via buttons and dialogues, are described including the explanation of all necessary input parameters. The method is validated utilizing 101 point clouds of six different tree species, in the main evergreen and coniferous trees. All scanned trees have been destructively harvested to get accurate estimates of above ground biomass with which we assess the accuracy of the SimpleTree-reconstructed cylinder models. The trees were grouped into four data sets and for each one a Concordance Correlation Coefficient of at least 0.92 (0.92, 0.97, 0.92, 0.94) and an total relative error at most ~8 % (2.42%, 3.59%, –4.59%, 8.27%) was achieved in the comparison of the model results to the ground truth data. A global statistical improvement of derived cylinder radii is presented as well as an efficient optimization approach to automatically improve user given input parameters. An additional check of the SimpleTree results is presented via comparison to the results of trees reconstructed using an alternative, published method.

[1]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[2]  M. Fournier,et al.  The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges , 2011, Annals of Forest Science.

[3]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[4]  David Belton,et al.  PROCESSING TREE POINT CLOUDS USING GAUSSIAN MIXTURE MODELS , 2013 .

[5]  Sorin C. Popescu,et al.  Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter , 2015, Remote. Sens..

[6]  Alexander Bucksch,et al.  SkelTre - Robust skeleton extraction from imperfect point clouds , 2010, Vis. Comput..

[7]  Zhen Wang,et al.  A Structure-Aware Global Optimization Method for Reconstructing 3-D Tree Models From Terrestrial Laser Scanning Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[9]  H. Spiecker,et al.  Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density , 2015 .

[10]  Ling Xu,et al.  Procedural Tree Modeling with Guiding Vectors , 2015, Comput. Graph. Forum.

[11]  Jonathan P. Sheppard,et al.  Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description , 2014 .

[12]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[13]  Martin Beland,et al.  A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR , 2014, Environ. Model. Softw..

[14]  Radomír Mech,et al.  Self-organizing tree models for image synthesis , 2009, ACM Trans. Graph..

[15]  John Sessions,et al.  A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models , 2015 .

[16]  N. Coops,et al.  A simple technique for co-registration of terrestrial LiDAR observations for forestry applications , 2012 .

[17]  T. Kira,et al.  A QUANTITATIVE ANALYSIS OF PLANT FORM-THE PIPE MODEL THEORY : I.BASIC ANALYSES , 1964 .

[18]  Juha Hyyppä,et al.  Estimation of the Timber Quality of Scots Pine with Terrestrial Laser Scanning , 2014 .

[19]  Giordano Teza,et al.  Effects of surface irregularities on intensity data from laser scanning: an experimental approach , 2008 .

[20]  Adam Runions,et al.  Modeling Trees with a Space Colonization Algorithm , 2007, NPH.

[21]  Richard A. Fournier,et al.  An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR , 2011, Environ. Model. Softw..

[22]  N. Pfeifer,et al.  Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees , 2004 .

[23]  Juha Hyyppä,et al.  Individual tree biomass estimation using terrestrial laser scanning , 2013 .

[24]  Harri Kaartinen,et al.  Change Detection of Tree Biomass with Terrestrial Laser Scanning and Quantitative Structure Modelling , 2014, Remote. Sens..

[25]  Alexander Bucksch,et al.  CAMPINO : A skeletonization method for point cloud processing , 2008 .

[26]  Heinrich Spiecker,et al.  Terrestrial laser scanning as a tool for assessing tree growth , 2017 .

[27]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[28]  Hans Pretzsch,et al.  Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning , 2013, Trees.

[29]  P. Raumonen,et al.  Massive-Scale Tree Modelling from Tls Data , 2015 .

[30]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[31]  George Vosselman,et al.  Tree modelling from mobile laser scanning data‐sets , 2011 .

[32]  Reinhard Klein,et al.  Hybrid tree reconstruction from inhomogeneous point clouds , 2014, The Visual Computer.

[33]  Ahlem Othmani,et al.  Towards automated and operational forest inventories with T-Lidar , 2011 .

[34]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[35]  Lew Fock Chong Lew Yan Voon,et al.  Single tree species classification from Terrestrial Laser Scanning data for forest inventory , 2013, Pattern Recognit. Lett..

[36]  Philippe Santenoise,et al.  Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment , 2012 .

[37]  Carsten Hess,et al.  Does Tree Architectural Complexity Influence the Accuracy of Wood Volume Estimates of Single Young Trees by Terrestrial Laser Scanning , 2015 .

[38]  P. Adler,et al.  VOXEL-BASED APPROACH FOR ESTIMATING URBAN TREE VOLUME FROM TERRESTRIAL LASER SCANNING DATA , 2012 .

[39]  N. Pfeifer,et al.  AUTOMATIC RECONSTRUCTION OF SINGLE TREES FROM TERRESTRIAL LASER SCANNER DATA , 2004 .

[40]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[41]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[42]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[43]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[44]  Juha Hyyppä,et al.  ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , 2016 .

[45]  Dong-Ming Yan,et al.  Efficient and robust reconstruction of botanical branching structure from laser scanned points , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[46]  Alan H. Strahler,et al.  Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®) , 2013 .

[47]  H. Akaike A new look at the statistical model identification , 1974 .

[48]  Thomas Udelhoven,et al.  The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans , 2013 .

[49]  Matt Olson,et al.  Automatic reconstruction of tree skeletal structures from point clouds , 2010, ACM Trans. Graph..

[50]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[51]  Heinrich Spiecker,et al.  Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations , 2014, Trees.

[52]  Markku Åkerblom,et al.  Analysis of Geometric Primitives in Quantitative Structure Models of Tree Stems , 2015, Remote. Sens..

[53]  Philip Lewis,et al.  Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data , 2013, Remote. Sens..

[54]  Chakkrit Preuksakarn,et al.  Reconstructing plant architecture from 3D laser scanner data. (Acquisition et validation de modèles architecturaux virtuels de plantes) , 2012 .

[55]  Alexandra Bac,et al.  Laser-scanned tree stem filtering for forest inventories measurements , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[56]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[57]  Alexander Bucksch,et al.  Revealing the skeleton from imperfect point clouds , 2011 .

[58]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[59]  Norbert Pfeifer,et al.  Structuring laser-scanned trees using 3D mathematical morphology , 2004 .

[60]  S. Wdowinski,et al.  Assessing Mangrove Above-Ground Biomass and Structure using Terrestrial Laser Scanning: A Case Study in the Everglades National Park , 2014, Wetlands.

[61]  Juha Hyyppä,et al.  Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Radomír Mech,et al.  Inverse Procedural Modelling of Trees , 2014, Comput. Graph. Forum.

[63]  Andrej-Nikolai Spiess,et al.  An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach , 2010, BMC pharmacology.

[64]  Christian Jauvin,et al.  PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds , 2014, Sensors.

[65]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  M. Herold,et al.  Nondestructive estimates of above‐ground biomass using terrestrial laser scanning , 2015 .

[67]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[68]  Ursula Kretschmer,et al.  A new approach to assessing tree stem quality characteristics using terrestrial laser scans , 2013 .

[69]  Johan Holmgren,et al.  Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm , 2014, Remote. Sens..

[70]  F. M. Danson,et al.  Terrestrial Laser Scanning for Plot-Scale Forest Measurement , 2015, Current Forestry Reports.

[71]  Sorin C. Popescu,et al.  Multi-temporal terrestrial laser scanning for modeling tree biomass change , 2014 .

[72]  Anne Verroust-Blondet,et al.  Extracting skeletal curves from 3D scattered data , 2000, The Visual Computer.

[73]  P. Pueschel The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 terrestrial laser scans , 2013 .

[74]  Juha Hyyppä,et al.  Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data , 2012, ISPRS Int. J. Geo Inf..

[75]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[76]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[77]  T. Landes,et al.  Influences of different materials on the measurements of a terrestrial laser scanner (TLS) , 2008 .

[78]  D. Baldocchi,et al.  On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR , 2014 .

[79]  Norbert Pfeifer,et al.  A Practical Approach for Extracting Tree Models in Forest Environments Based on Equirectangular Projections of Terrestrial Laser Scans , 2013, Remote. Sens..

[80]  Richard A. Fournier,et al.  Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species , 2015 .

[81]  Hui Xu,et al.  Knowledge and heuristic-based modeling of laser-scanned trees , 2007, TOGS.

[82]  H. Spiecker,et al.  AUTOMATIC DETERMINATION OF FOREST INVENTORY PARAMETERS USING TERRESTRIAL LASER SCANNING , 2003 .

[83]  Yi Lin,et al.  From TLS to VLS: Biomass Estimation at Individual Tree Level , 2010, Remote. Sens..

[84]  Richard A. Fournier,et al.  A fine-scale architectural model of trees to enhance LiDAR-derived measurements of forest canopy structure , 2012 .

[85]  Hans-Gerd Maas,et al.  AUTOMATIC RECONSTRUCTION OF SKELETAL STRUCTURES FROM TLS FOREST SCENES , 2014 .