Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease

[1]  T. Snutch,et al.  Recent advances in the development of T‐type calcium channel blockers for pain intervention , 2018, British journal of pharmacology.

[2]  W. Catterall,et al.  Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels , 2018, The Journal of Neuroscience.

[3]  Lianghong Zheng,et al.  CaV2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons , 2017, Neuron.

[4]  P. Lory,et al.  Characterization of the dominant inheritance mechanism of Episodic Ataxia type 2 , 2017, Neurobiology of Disease.

[5]  T. Südhof,et al.  Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C2A domain in asynchronous neurotransmitter release , 2017, Proceedings of the National Academy of Sciences.

[6]  Masahiko Watanabe,et al.  Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice , 2017, Journal of the Neurological Sciences.

[7]  K. Ressler,et al.  Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood , 2017, Molecular Psychiatry.

[8]  Z. D. Kabir,et al.  From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms , 2017, Neurotherapeutics.

[9]  A. Rump,et al.  New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy , 2017, Human molecular genetics.

[10]  E. Bertini,et al.  Missense mutations of CACNA1A are a frequent cause of autosomal dominant nonprogressive congenital ataxia. , 2017, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[11]  A. Dickenson,et al.  Calcium channel modulation as a target in chronic pain control , 2017, British journal of pharmacology.

[12]  Daniel E Feldman,et al.  Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  Manuel F. Navedo,et al.  Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons , 2017, Science Signaling.

[14]  W. Catterall,et al.  Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning , 2016, Proceedings of the National Academy of Sciences.

[15]  Z. D. Kabir,et al.  L‐type Ca2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes , 2016, The Journal of physiology.

[16]  Zhen Yan,et al.  Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution , 2016, Nature.

[17]  Manuel F. Navedo,et al.  Phosphorylation of Cav1.2 on S1928 uncouples the L‐type Ca2+ channel from the β2 adrenergic receptor , 2016, The EMBO journal.

[18]  A. McCallion,et al.  Functional Characterization of Schizophrenia-Associated Variation in CACNA1C , 2016, PloS one.

[19]  Alexandra Pinggera,et al.  Cav1.3 (CACNA1D) L‐type Ca2+ channel dysfunction in CNS disorders , 2016, The Journal of physiology.

[20]  R. Tsien,et al.  Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression , 2016, Science.

[21]  R. Nicoll,et al.  Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. , 2016, Annual review of physiology.

[22]  R. Nicoll,et al.  Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP , 2016, Proceedings of the National Academy of Sciences.

[23]  W. Catterall,et al.  Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons , 2016, Proceedings of the National Academy of Sciences.

[24]  W. Catterall,et al.  Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels , 2016, Proceedings of the National Academy of Sciences.

[25]  Zhen Yan,et al.  Structure of the voltage-gated calcium channel Cav1.1 complex , 2015, Science.

[26]  Wade G. Regehr,et al.  The calcium sensor synaptotagmin 7 is required for synaptic facilitation , 2015, Nature.

[27]  M. Owen,et al.  Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders , 2015, Progress in Neurobiology.

[28]  A. Dolphin,et al.  The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential , 2015, Pharmacological Reviews.

[29]  T. Südhof,et al.  RIM-BPs Mediate Tight Coupling of Action Potentials to Ca2+-Triggered Neurotransmitter Release , 2015, Neuron.

[30]  Dai Zhang,et al.  Schizophrenia Related Variants in CACNA1C also Confer Risk of Autism , 2015, PloS one.

[31]  T. Kuner,et al.  Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity , 2015, The Journal of Neuroscience.

[32]  J. Striessnig,et al.  L-type calcium channels as drug targets in CNS disorders , 2015, Channels.

[33]  B. Schwaller,et al.  The EF-hand Ca2+-binding protein super-family: A genome-wide analysis of gene expression patterns in the adult mouse brain , 2015, Neuroscience.

[34]  E. Domany,et al.  Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia , 2015, Schizophrenia Research.

[35]  Klaus R. Liedl,et al.  CACNA1D De Novo Mutations in Autism Spectrum Disorders Activate Cav1.3 L-Type Calcium Channels , 2015, Biological Psychiatry.

[36]  R. Tsien,et al.  Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. , 2015, Biochemical and biophysical research communications.

[37]  A. M. van den Maagdenberg,et al.  Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans , 2015, Front. Cell. Neurosci..

[38]  A. Torrente,et al.  Functional role of voltage gated Ca2+ channels in heart automaticity , 2015, Front. Physiol..

[39]  M. Owen,et al.  Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity , 2015, Biological Psychiatry.

[40]  G. Augustine,et al.  Presynaptic nanodomains: a tale of two synapses , 2014, Front. Cell. Neurosci..

[41]  Robert W. Williams,et al.  Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders , 2014, Front. Neurosci..

[42]  W. Catterall,et al.  Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation , 2014, Molecular and Cellular Neuroscience.

[43]  P. Berggren,et al.  Ionic mechanisms in pancreatic β cell signaling , 2014, Cellular and Molecular Life Sciences.

[44]  W. Sather,et al.  Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A. , 2014, Cell reports.

[45]  W. Catterall,et al.  AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. , 2014, Cell reports.

[46]  R. Baloh,et al.  Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation. , 2014, Brain : a journal of neurology.

[47]  Young Shin Kim,et al.  Recent challenges to the psychiatric diagnostic nosology: a focus on the genetics and genomics of neurodevelopmental disorders. , 2014, International journal of epidemiology.

[48]  V. Chevaleyre,et al.  Modulating excitation through plasticity at inhibitory synapses , 2014, Front. Cell. Neurosci..

[49]  Stephen J. Guter,et al.  Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders , 2014, American journal of human genetics.

[50]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[51]  Christian Rosenmund,et al.  Ultrafast endocytosis at mouse hippocampal synapses , 2013, Nature.

[52]  Richard L. Huganir,et al.  AMPARs and Synaptic Plasticity: The Last 25 Years , 2013, Neuron.

[53]  D. Lipscombe,et al.  Control of neuronal voltage-gated calcium ion channels from RNA to protein , 2013, Trends in Neurosciences.

[54]  Jianxin Shi,et al.  Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs , 2013, Nature Genetics.

[55]  A. Solodkin,et al.  Spinocerebellar ataxia type 6. , 2013, Handbook of clinical neurology.

[56]  Jun Wang,et al.  Second Cistron in CACNA1A Gene Encodes a Transcription Factor Mediating Cerebellar Development and SCA6 , 2013, Cell.

[57]  S Purcell,et al.  Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC , 2013, Molecular Psychiatry.

[58]  S Purcell,et al.  Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC , 2013, Molecular Psychiatry.

[59]  W. Catterall,et al.  Calcium Channels and Short-term Synaptic Plasticity* , 2013, The Journal of Biological Chemistry.

[60]  W. Catterall,et al.  Fine-tuning synaptic plasticity by modulation of CaV2.1 channels with Ca2+ sensor proteins , 2012, Proceedings of the National Academy of Sciences.

[61]  S. Priori,et al.  Inherited calcium channelopathies in the pathophysiology of arrhythmias , 2012, Nature Reviews Cardiology.

[62]  Hee-Sup Shin,et al.  T-Type Calcium Channels Consolidate Tonic Action Potential Output of Thalamic Neurons to Neocortex , 2012, The Journal of Neuroscience.

[63]  Eric R Kandel,et al.  Synapses and memory storage. , 2012, Cold Spring Harbor perspectives in biology.

[64]  T. Hansen,et al.  No association of polymorphisms in human endogenous retrovirus K18 and CD48 with schizophrenia. , 2012, Psychiatric genetics.

[65]  Tommaso Patriarchi,et al.  β2-Adrenergic receptor supports prolonged theta tetanus-induced LTP. , 2012, Journal of neurophysiology.

[66]  W. Wadman,et al.  Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice , 2012, Brain Research.

[67]  A. Dolphin,et al.  alpha2delta expression sets presynaptic calcium channel abundance and release probability , 2012, Nature.

[68]  D. Geschwind,et al.  Using iPS cell-derived neurons to uncover cellular phenotypes associated with Timothy Syndrome , 2011, Nature Medicine.

[69]  M. Swami New from NPG: Genome-wide association study identifies five new schizophrenia loci , 2011, Nature Medicine.

[70]  Ronald W. Alfa,et al.  Mouse model of Timothy syndrome recapitulates triad of autistic traits , 2011, Proceedings of the National Academy of Sciences.

[71]  W. Catterall Voltage-gated calcium channels. , 2011, Cold Spring Harbor perspectives in biology.

[72]  R. Gibbs,et al.  Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders , 2011, Human molecular genetics.

[73]  David Curtis,et al.  Case–case genome-wide association analysis shows markers differentially associated with schizophrenia and bipolar disorder and implicates calcium channel genes , 2011, Psychiatric genetics.

[74]  T. Südhof,et al.  RIM Determines Ca2+ Channel Density and Vesicle Docking at the Presynaptic Active Zone , 2011, Neuron.

[75]  Thomas C. Südhof,et al.  RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction , 2011, Cell.

[76]  Beat Schwaller,et al.  Cytosolic Ca2+ buffers. , 2010, Cold Spring Harbor perspectives in biology.

[77]  B. MacVicar,et al.  Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel , 2010, Proceedings of the National Academy of Sciences.

[78]  William A. Catterall,et al.  Molecular Mechanism of Calcium Channel Regulation in the Fight-or-Flight Response , 2010, Science Signaling.

[79]  B. Fakler,et al.  Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain , 2010, Proceedings of the National Academy of Sciences.

[80]  T. Soong,et al.  CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency , 2010, Pflügers Archiv - European Journal of Physiology.

[81]  D. Kullmann,et al.  Dysfunction of the CaV2.1 calcium channel in cerebellar ataxias , 2010, F1000 biology reports.

[82]  A. Dolphin,et al.  The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function , 2010, Proceedings of the National Academy of Sciences.

[83]  Rob C. G. van de Ven,et al.  High cortical spreading depression susceptibility and migraine‐associated symptoms in Cav2.1 S218L mice , 2010, Annals of neurology.

[84]  M C O'Donovan,et al.  The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia , 2009, Molecular Psychiatry.

[85]  M. Ferrari,et al.  Enhanced Excitatory Transmission at Cortical Synapses as the Basis for Facilitated Spreading Depression in CaV2.1 Knockin Migraine Mice , 2009, Neuron.

[86]  N. Craddock,et al.  Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk , 2009, Molecular Psychiatry.

[87]  T. Soong,et al.  Alternative splicing of voltage-gated calcium channels: from molecular biology to disease , 2009, Pflügers Archiv - European Journal of Physiology.

[88]  W. Catterall,et al.  Calcium Channel Regulation and Presynaptic Plasticity , 2008, Neuron.

[89]  Masahiko Watanabe,et al.  Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels , 2008, Proceedings of the National Academy of Sciences.

[90]  D. Holtzman,et al.  Active and passive immunotherapy for neurodegenerative disorders. , 2008, Annual review of neuroscience.

[91]  K. Watschinger,et al.  A Destructive Interaction Mechanism Accounts for Dominant-Negative Effects of Misfolded Mutants of Voltage-Gated Calcium Channels , 2008, The Journal of Neuroscience.

[92]  G. Cheron,et al.  Cerebellar network plasticity: From genes to fast oscillation , 2008, Neuroscience.

[93]  T. Südhof,et al.  Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis , 2008, Proceedings of the National Academy of Sciences.

[94]  C. Jeng,et al.  Dominant‐negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q‐type Ca2+ channels , 2008, Journal of cellular physiology.

[95]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[96]  W. Sather,et al.  AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling , 2007, Neuron.

[97]  Aaron M. Beedle,et al.  RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels , 2007, Nature Neuroscience.

[98]  E. F. Stanley,et al.  A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. , 2007, Journal of biochemistry and molecular biology.

[99]  R. Schneggenburger,et al.  Parvalbumin Is a Mobile Presynaptic Ca2+ Buffer in the Calyx of Held that Accelerates the Decay of Ca2+ and Short-Term Facilitation , 2007, The Journal of Neuroscience.

[100]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[101]  A. J. Castiglioni,et al.  Alternative splicing controls G protein–dependent inhibition of N-type calcium channels in nociceptors , 2007, Nature Neuroscience.

[102]  F. Lehmann-Horn,et al.  Paroxysmal muscle weakness - the familial periodic paralyses , 2006, Journal of Neurology.

[103]  C. Gomez,et al.  C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. , 2006, Human molecular genetics.

[104]  C. Jeng,et al.  Dominant-negative effects of human P/Q-type Ca2+ channel mutations associated with episodic ataxia type 2. , 2006, American journal of physiology. Cell physiology.

[105]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[106]  Franz Hofmann,et al.  Role of Hippocampal Cav1.2 Ca2+ Channels in NMDA Receptor-Independent Synaptic Plasticity and Spatial Memory , 2005, The Journal of Neuroscience.

[107]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[108]  Jianhua Xu,et al.  The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse , 2005, Neuron.

[109]  I. Forsythe,et al.  Functional Compensation of P/Q by N-Type Channels Blocks Short-Term Plasticity at the Calyx of Held Presynaptic Terminal , 2004, The Journal of Neuroscience.

[110]  S. Priori,et al.  CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism , 2004, Cell.

[111]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[112]  W. Catterall,et al.  Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[113]  D. T. Yue,et al.  Unified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family , 2003, Neuron.

[114]  K. Campbell,et al.  Auxiliary subunits: essential components of the voltage-gated calcium channel complex , 2003, Current Opinion in Neurobiology.

[115]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[116]  C. Herron,et al.  Inhibition of l-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo , 2003, Brain Research.

[117]  E. Neher,et al.  Emerging Roles of Presynaptic Proteins in Ca++-Triggered Exocytosis , 2002, Science.

[118]  C. Fletcher,et al.  Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[119]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[120]  J. Roder,et al.  Neuronal Calcium Sensor 1 and Activity-Dependent Facilitation of P/Q-Type Calcium Currents at Presynaptic Nerve Terminals , 2002, Science.

[121]  W. Catterall,et al.  Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1 , 2002, Nature Neuroscience.

[122]  M. L. Chen,et al.  Spinocerebellar ataxia type 6. , 2001, Hong Kong medical journal = Xianggang yi xue za zhi.

[123]  V Avdonin,et al.  A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. , 2001, Science.

[124]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[125]  C Jodice,et al.  Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. , 2001, American journal of human genetics.

[126]  J. Hell,et al.  Protein Phosphatase 2A Is Associated with Class C L-type Calcium Channels (Cav1.2) and Antagonizes Channel Phosphorylation by cAMP-dependent Protein Kinase* , 2000, The Journal of Biological Chemistry.

[127]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[128]  O. Caillard,et al.  Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  W. Catterall,et al.  Ca2+/Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca2+ Channels , 2000, The Journal of Neuroscience.

[130]  F. Couraud,et al.  [Calcium channels and migraine]. , 2000, Pathologie-biologie.

[131]  R. Tsien,et al.  Ca2+-sensitive Inactivation and Facilitation of L-type Ca2+ Channels Both Depend on Specific Amino Acid Residues in a Consensus Calmodulin-binding Motif in theα1C subunit* , 2000, The Journal of Biological Chemistry.

[132]  Suk-Ho Lee,et al.  Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites , 2000, The Journal of physiology.

[133]  W. Catterall,et al.  Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin , 1999, Nature Neuroscience.

[134]  P. Dutar,et al.  Glutamatergic synaptic responses and long‐term potentiation are impaired in the CA1 hippocampal area of calbindin D28k‐deficient mice , 1999, Synapse.

[135]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[136]  W. Catterall,et al.  Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[137]  I. Forsythe,et al.  Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem , 1998, The Journal of physiology.

[138]  B. Sakmann,et al.  Facilitation of presynaptic calcium currents in the rat brainstem , 1998, The Journal of physiology.

[139]  J. Yates,et al.  Primary Structure and Function of an A Kinase Anchoring Protein Associated with Calcium Channels , 1998, Neuron.

[140]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[141]  E. Neher,et al.  Alteration of Ca2+ Dependence of Neurotransmitter Release by Disruption of Ca2+ Channel/Syntaxin Interaction , 1997, The Journal of Neuroscience.

[142]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[143]  T. Snutch,et al.  Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit , 1997, Nature.

[144]  J. Hell,et al.  N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[145]  S. Ikeda Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits , 1996, Nature.

[146]  K. Mackie,et al.  Modulation of Ca2+ channels βγ G-protein py subunits , 1996, Nature.

[147]  R. Tsien,et al.  Functional impact of syntaxin on gating of N-type and Q-type calcium channels , 1995, Nature.

[148]  M. Mauk,et al.  LTP induced by activation of voltage-dependent Ca2+ channels requires protein kinase activity. , 1995, Neuroreport.

[149]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[150]  W. Catterall,et al.  Identification of a syntaxin-binding site on N-Type calcium channels , 1994, Neuron.

[151]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[152]  C. Lévêque,et al.  Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. , 1994, The Journal of biological chemistry.

[153]  K. Campbell,et al.  Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit , 1994, Nature.

[154]  J. Hell,et al.  Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits , 1993, The Journal of cell biology.

[155]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[156]  K. Campbell,et al.  Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. , 1991, The Journal of biological chemistry.

[157]  W. Catterall,et al.  Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. , 1990, The Journal of biological chemistry.

[158]  K. Campbell,et al.  Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. , 1990, Science.

[159]  G. Lynch,et al.  Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation , 1987, Brain Research.

[160]  W. Catterall,et al.  Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[161]  R. Tsien,et al.  Three types of neuronal calcium channel with different calcium agonist sensitivity , 1985, Nature.

[162]  H. Lux,et al.  A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones , 1984, Nature.

[163]  H. Reuter Calcium channel modulation by neurotransmitters, enzymes and drugs , 1983, Nature.

[164]  T. Reese,et al.  Structural changes during transmitter release at synapses in the frog sympathetic ganglion , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[165]  T. Reese,et al.  EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[166]  A Mallart,et al.  The relation between quantum content and facilitation at the neuromuscular junction of the frog , 1968, The Journal of physiology.

[167]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[168]  A Mallart,et al.  An analysis of facilitation of transmitter release at the neuromuscular junction of the frog , 1967, The Journal of physiology.

[169]  J. Hugot,et al.  International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) , 2019 .

[170]  M. Pirinen,et al.  Dissection of the genetics of Parkinson ’ s disease identifies an additional association 5 ′ of SNCA and multiple associated haplotypes at 17 q 21 The UK Parkinson ’ s Disease , 2017 .

[171]  Valentina Trujillo Di Biase,et al.  Phosphorylation of Cav 1 . 2 on S 1928 uncouples the L-type Ca 2 + channel from the b 2 adrenergic receptor , 2016 .

[172]  J. Schwaller,et al.  THE EF-HAND CA-BINDING PROTEIN SUPER-FAMILY: A GENOME-WIDE ANALYSIS OF GENE EXPRESSION PATTERNS IN THE ADULT MOUSE BRAIN , 2015 .

[173]  C. Altier,et al.  Calcium-permeable ion channels in pain signaling. , 2014, Physiological reviews.

[174]  Tao Li,et al.  CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population. , 2014, The British journal of psychiatry : the journal of mental science.

[175]  Erin K. Hedlund,et al.  Genome-wide association analysis identifies 13 new risk loci for schizophrenia , 2013 .

[176]  T. Südhof,et al.  Calcium control of neurotransmitter release. , 2012, Cold Spring Harbor perspectives in biology.

[177]  박찬영 Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome , 2012 .

[178]  A. Solodkin,et al.  Chapter 29 – Spinocerebellar ataxia type 6 , 2012 .

[179]  Beat Schwaller,et al.  Cytosolic Ca 2þ Buffers , 2010 .

[180]  S. Cannon,et al.  The primary periodic paralyses: diagnosis, pathogenesis and treatment. , 2006, Brain : a journal of neurology.

[181]  I. Splawski Inaugural Article: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations , 2005 .

[182]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[183]  Phiroz E. Tarapore,et al.  Overexpression of calbindin D28k in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal‐dependent memory , 2004, Hippocampus.

[184]  K. Palczewski,et al.  Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. , 2002, Advances in experimental medicine and biology.

[185]  R. Baloh,et al.  Genetics of episodic ataxia. , 2002, Advances in neurology.

[186]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[187]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[188]  David E. Clapham,et al.  G PROTEIN BETA GAMMA SUBUNITS , 1997 .

[189]  S. Ikeda Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. , 1996, Nature.

[190]  K. Mackie,et al.  Modulation of Ca2+ channels by G-protein beta gamma subunits. , 1996, Nature.

[191]  M. Adams,et al.  Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. , 1994, Annual review of biochemistry.

[192]  K. Campbell,et al.  Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. , 1994, Nature.

[193]  M. Adams,et al.  CALCIUM CHANNEL DIVERSITY AND NEUROTRANSMITTER RELEASE : THE OMEGA -CONOTOXINS AND OMEGA -AGATOXINS , 1994 .

[194]  R. Llinás,et al.  Voltage-dependent calcium conductances in mammalian neurons. The P channel. , 1989, Annals of the New York Academy of Sciences.

[195]  Tao Li,et al.  CACNA 1 C , schizophrenia and major depressive disorder in the Han Chinese population , 2022 .

[196]  Scott T. Wong,et al.  Ca 2 + / calmodulin binds to andmodulates P / Q-typecalciumchannels , 2022 .

[197]  Nature Genetics Advance Online Publication a N a Ly S I S Cross-disorder Group of the Psychiatric Genomics Consortium * , 2022 .