Note on critical exponents for a system of heat equations coupled in the boundary conditions

This note establishes the blow up estimates near the blow up time for a system of heat equations coupled in the boundary conditions. Under certain assumptions, the exact rate of blow up is established. We also prove that the only solution with vanishing initial values whenpq ≥ 1 is the trivial one.

[1]  Howard A. Levine,et al.  The value of the critical exponent for reaction-diffusion equations in cones , 1990 .

[2]  Miroslav Chlebík,et al.  On the blow-up rate for the heat equation with a nonlinear boundary condition , 2000 .

[3]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[4]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[5]  H. Amann Parabolic evolution equations and nonlinear boundary conditions , 1988 .

[6]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[7]  M. Fila,et al.  Blow-up on the boundary: a survey , 1996 .

[8]  Hong-Ming Yin,et al.  The profile near blowup time for solution of the heat equation with a nonlinear boundary condition , 1994 .

[9]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[10]  Keng Deng,et al.  ON CRITICAL EXPONENTS FOR A SYSTEM OF HEAT EQUATIONS COUPLED IN THE BOUNDARY CONDITIONS , 1994 .

[11]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[12]  M. A. Herrero,et al.  A uniqueness result for a semilinear reaction-diffusion system , 1991 .

[13]  Howard A. Levine,et al.  On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary , 1996 .

[14]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .