The spectrum and an index formula for the Neumann $p-$Laplacianand multiple solutions for problems with a crossing nonlinearity

In this paper we first conduct a study of the spectrum of the negative $p$-Laplacian with Neumann boundary conditions. More precisely we investigate the first nonzero eigenvalue. We produce alternative variational characterizations, we examine its dependence on $p\in( 1,\infty) $ and on the weight function $m\in L^{\infty}(Z) _{+}$ and we prove that the isolation of the principal eigenvalue $\lambda_{0}=0,$ is uniform for all $p$ in a bounded closed interval. All these results are then used to prove an index formula (jumping theorem) for the $d_{( S)_{+}}-$degree map at the first nonzero eigenvalue. Finally the index formula is used to prove a multiplicity result for problems with a multivalued crossing nonlinearity.

[1]  Nikolaos S. Papageorgiou,et al.  Existence and multiplicity of solutions for Neumann problems , 2007 .

[2]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[3]  Nikolaos S. Papageorgiou,et al.  Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations With Inequality Constraints , 2008 .

[4]  Nikolaos S. Papageorgiou,et al.  Multiple nontrivial solutions for nonlinear periodic problems with the p-Laplacian , 2007 .

[5]  Pavel Drábek,et al.  Quasilinear Elliptic Equations with Degenerations and Singularities , 1997 .

[6]  Eduardo Casas,et al.  A Green's formula for quasilinear elliptic operators , 1989 .

[7]  An Lê,et al.  Eigenvalue problems for the p-Laplacian , 2006 .

[8]  F. Browder Nonlinear elliptic boundary value problems , 1963 .

[9]  Arrigo Cellina,et al.  Approximation of set valued functions and fixed point theorems , 1969 .

[10]  Manuel del Pino,et al.  Global bifurcation from the eigenvalues of the p-Laplacian , 1991 .

[11]  Generalizations of Browder’s degree theory , 1995 .

[12]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[13]  Igor Vladimirovič Skrypnik Nonlinear elliptic boundary value problems , 1986 .

[14]  F. Faraci Multiplicity results for a Neumann problem involving the p-Laplacian , 2003 .

[15]  F. Browder Fixed point theory and nonlinear problems , 1983 .

[16]  Nikolaos S. Papageorgiou,et al.  A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential , 2007, J. Glob. Optim..

[17]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  P. Drábek On the global bifurcation for a class of degenerate equations , 1991 .

[20]  N. Kenmochi Pseudomonotone operators and nonlinear elliptic boundary value problems , 1975 .

[21]  Nikolaos S. Papageorgiou,et al.  Multiplicity Results for Nonlinear Neumann Problems , 2006, Canadian Journal of Mathematics.

[22]  Shouchuan Hu,et al.  Handbook of Multivalued Analysis: Volume I: Theory , 1997 .