Electronics with Molecules

The ability to understand, control, and exploit the flow of electronic charge through single or small organized arrays of molecules represents an ultimate dream of physicists, chemists, materials scientists, and device engineers. This chapter addresses some of the formal, computational, and device-level issues facing molecular electronics – specifically, how to model current flow through various molecular components in their diverse transport regimes, how the computed results measure up with available experiments, how they advance our fundamental understanding of nonequilibrium quantum physics, and how we could utilize this understanding to do potentially useful electronics with molecules.

[1]  B. Cho,et al.  Electrical conduction through self-assembled monolayers in molecular junctions: Au/molecules/Au versus Au/molecule/PEDOT:PSS/Au , 2009 .

[2]  Phonon runaway in carbon nanotube quantum dots , 2006, cond-mat/0606273.

[3]  M. Paulsson,et al.  Inelastic transport through molecules: comparing first-principles calculations to experiments. , 2006, Nano letters.

[4]  Supriyo Datta,et al.  Gating of a Molecular Transistor: Electrostatic and Conformational , 2002 .

[5]  Jonathan S. Lindsey,et al.  Molecular Memories That Survive Silicon Device Processing and Real-World Operation , 2003, Science.

[6]  J. Venables Introduction to surface and thin film processes , 2000 .

[7]  H. Jaffe,et al.  Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines , 1968 .

[8]  Li Cd,et al.  Photoinduced Electron Transfer at Molecule−Metal Interfaces , 2006 .

[9]  Generic model for current collapse in spin-blockaded transport , 2007, cond-mat/0702161.

[10]  Rate equations for Coulomb blockade with ferromagnetic leads , 2004, cond-mat/0412592.

[11]  Transport in Multilevel Quantum Dots: From the Kondo Effect to the Coulomb Blockade Regime , 1999, cond-mat/9901144.

[12]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[13]  Three-terminal scanning tunneling spectroscopy of suspended carbon nanotubes , 2005, cond-mat/0504377.

[14]  Lee,et al.  Transport through a strongly interacting electron system: Theory of periodic conductance oscillations. , 1991, Physical review letters.

[15]  A. Shluger,et al.  Intramolecular Dipole Coupling and Depolarization in Self‐Assembled Monolayers , 2008 .

[16]  Kang L Wang,et al.  Correlated random telegraph signal and low-frequency noise in carbon nanotube transistors. , 2008, Nano letters.

[17]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[18]  C Joachim,et al.  Direct determination of the energy required to operate a single molecule switch. , 2003, Physical review letters.

[19]  Gurvitz,et al.  Microscopic derivation of rate equations for quantum transport. , 1996, Physical review. B, Condensed matter.

[20]  Yuyuan Tian,et al.  Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol , 2004 .

[21]  M. Paulsson,et al.  Unified description of inelastic propensity rules for electron transport through nanoscale junctions. , 2007, Physical review letters.

[22]  P. Pals,et al.  Incoherent tunnelling through two quantum dots with Coulomb interaction , 1996, cond-mat/9601156.

[23]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[24]  J. Naciri,et al.  Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. , 2002, Physical review letters.

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[27]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[28]  Marcel Mayor,et al.  Electric current through a molecular rod-relevance of the position of the anchor groups. , 2003, Angewandte Chemie.

[29]  S. Louie,et al.  Renormalization of molecular electronic levels at metal-molecule interfaces. , 2006, Physical Review Letters.

[30]  Supriyo Bandyopadhyay Power dissipation in spintronic devices: a general perspective. , 2007, Journal of nanoscience and nanotechnology.

[31]  Supriyo Datta,et al.  Current-voltage characteristics of molecular conductors: two versus three terminal , 2002 .

[32]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[33]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[34]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[35]  First-principles analysis of molecular conduction using quantum chemistry software , 2002, cond-mat/0206551.

[36]  P. Avouris,et al.  High-performance dual-gate carbon nanotube FETs with 40-nm gate length , 2005, IEEE Electron Device Letters.

[37]  Supriyo Datta,et al.  Unified description of molecular conduction: From molecules to metallic wires , 2001 .

[38]  H. Wong,et al.  Nanoelectronics: nanotubes, nanowires, molecules, and novel concepts , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[39]  P. Avouris,et al.  Negative Differential Resistance on the Atomic Scale: Implications for Atomic Scale Devices , 1989, Science.

[40]  C. Daniel Frisbie,et al.  Electrical Resistance of Long Conjugated Molecular Wires , 2008, Science.

[41]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[42]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .

[43]  Mark A. Ratner,et al.  Introducing molecular electronics , 2002 .

[44]  E. Emberly,et al.  Comment on "First-principles calculation of transport properties of a molecular device". , 2001, Physical review letters.

[45]  Martin P. Struijk,et al.  Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules , 2003 .

[46]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[47]  ERIC M. VOGEL,et al.  Technology and metrology of new electronic materials and devices. , 2007, Nature nanotechnology.

[48]  Avik W. Ghosh,et al.  Molecular Electronics: Theory and Device Prospects , 2004 .

[49]  Paul M. Solomon,et al.  Evaluations and Considerations for Self-Assembled Monolayer Field-Effect Transistors , 2003 .

[50]  U. Banin,et al.  Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots , 1999, Nature.

[51]  S. Datta,et al.  A simple quantum mechanical treatment of scattering in nanoscale transistors , 2003 .

[52]  Jillian M Buriak,et al.  Organometallic chemistry on silicon and germanium surfaces. , 2002, Chemical reviews.

[53]  Identifying contact effects in electronic conduction through C60 on silicon. , 2005, Physical review letters.

[54]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[55]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[56]  N. D. Lang,et al.  Measurement of the conductance of a hydrogen molecule , 2002, Nature.

[57]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[58]  R Ochs,et al.  Driving current through single organic molecules. , 2001, Physical review letters.

[59]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[60]  J. Tour,et al.  Nanowell device for the electrical characterization of metal–molecule–metal junctions , 2005 .

[61]  James M. Tour,et al.  Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture, and Programming , 2003 .

[62]  J. Pitters,et al.  Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy. , 2006, Nano letters.

[63]  M. Ratner,et al.  Molecular Transport Junctions: Clearing Mists , 2007 .

[64]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[65]  Lundstrom,et al.  Effective mass approach for n-MOSFETs on arbitrarily oriented wafers , 2004 .

[66]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[67]  Robert G. Parr,et al.  A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II , 1953 .

[68]  Avik W. Ghosh,et al.  Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods , 2009 .

[69]  Gaudioso,et al.  Vibrationally mediated negative differential resistance in a single molecule , 2000, Physical review letters.

[70]  B. Persson,et al.  Theory of the local tunneling spectrum of a vibrating adsorbate , 1988 .

[71]  S. Louie,et al.  Amine-gold linked single-molecule circuits: experiment and theory. , 2007, Nano letters.

[72]  Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry , 1999, cond-mat/9905225.

[73]  A. Troisi,et al.  Modeling the Inelastic Electron Tunneling Spectra of Molecular Wire Junctions , 2005 .

[74]  Negative differential resistance of TEMPO molecules on Si(1 1 1) , 2007 .

[75]  Hylke B. Akkerman,et al.  Towards molecular electronics with large-area molecular junctions , 2006, Nature.

[76]  Colin Nuckolls,et al.  Dependence of single-molecule junction conductance on molecular conformation , 2006, Nature.

[77]  Avik W. Ghosh,et al.  Extended hückel theory for band structure, chemistry, and transport. I. Carbon nanotubes , 2006 .

[78]  James R Heath,et al.  More on Molecular Electronics , 2004, Science.

[79]  Jean-Luc Brédas,et al.  Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.

[80]  Pastawski,et al.  Conductance of a disordered linear chain including inelastic scattering events. , 1990, Physical review. B, Condensed matter.

[81]  A. Zunger,et al.  Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots , 2001 .

[82]  A. Ghosh,et al.  The role of many-particle excitations in Coulomb blockaded transport , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[83]  M. Di Ventra,et al.  The benzene molecule as a molecular resonant-tunneling transistor , 2000 .

[84]  Craig S. Lent,et al.  Bypassing the Transistor Paradigm , 2000, Science.

[85]  Mircea R. Stan,et al.  A Programmable Majority Logic Array Using Molecular Scale Electronics , 2006, IEEE Transactions on Circuits and Systems Part 1: Regular Papers.

[86]  A. Majumdar,et al.  Room temperature thermal conductance of alkanedithiol self-assembled monolayers , 2006 .

[87]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[88]  Peter M. Zeitzoff 2007 International Technology Roadmap: MOSFET scaling challenges , 2008 .

[89]  N. Zimbovskaya Electron transport through a quantum dot in the Coulomb blockade regime: Nonequilibrium Green's function based model , 2008, 0803.3799.

[90]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[91]  M. Hersam,et al.  Observed suppression of room temperature negative differential resistance in organic monolayers on Si(100) , 2004 .

[92]  R. Reifenberger,et al.  Charge Transport through Molecular Junctions , 2004 .

[93]  Mark S. Lundstrom,et al.  APPLIED PHYSICS: Enhanced: Moore's Law Forever? , 2003 .

[94]  S. Datta,et al.  Charging-induced asymmetry in molecular conductors , 2004 .

[95]  J. Tour,et al.  Fabrication and Characterization of Interconnected Nanowell Molecular Electronic Devices in Crossbar Architecture , 2009, IEEE Transactions on Nanotechnology.

[96]  Jukka P. Pekola,et al.  Properties of native ultrathin aluminium oxide tunnel barriers , 2003 .

[97]  Avik W. Ghosh,et al.  Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors , 2009, 0904.2116.

[98]  M. Reed,et al.  Computing with molecules. , 2000, Scientific American.

[99]  R. Kotlyar,et al.  Assessment of room-temperature phonon-limited mobility in gated silicon nanowires , 2004 .

[100]  Electrostatic potential profiles of molecular conductors , 2004, cond-mat/0401605.

[101]  Eldon Emberly,et al.  Principles for the design and operation of a molecular wire transistor , 2000 .

[102]  Avik W. Ghosh,et al.  Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers , 2004, cond-mat/0403709.

[103]  Eldon Emberly,et al.  Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts , 1998 .

[104]  Marcel Mayor,et al.  Electronic transport through single conjugated molecules , 2002 .

[105]  J. Pople,et al.  Electron interaction in unsaturated hydrocarbons , 1953 .

[106]  Edgar Bonet,et al.  Solving rate equations for electron tunneling via discrete quantum states , 2001 .

[107]  B. Persson,et al.  Inelastic electron tunneling from a metal tip: The contribution from resonant processes. , 1987, Physical review letters.

[108]  Theory of High Bias Coulomb Blockade in Ultrashort Molecules , 2006, IEEE Transactions on Nanotechnology.

[109]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[110]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[111]  Avik W. Ghosh,et al.  Molecules on silicon: Self-consistent first-principles theory and calibration to experiments , 2005 .

[112]  C. Beenakker,et al.  Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. , 1991, Physical review. B, Condensed matter.

[113]  J. Kong,et al.  Electrical generation and absorption of phonons in carbon nanotubes , 2004, Nature.

[114]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[115]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[116]  G. Jw Inelastic resonance scattering, tunneling, and desorption. , 1991 .

[117]  H. B. Weber,et al.  Statistical approach to investigating transport through single molecules. , 2007, Physical review letters.

[118]  Mark A. Reed,et al.  Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer , 2004 .

[119]  A. Fisher The embedding potential for an interacting system , 1989 .

[120]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[121]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[122]  Avik W. Ghosh,et al.  Reversal of current blockade in nanotube-based field effect transistors through multiple trap correlations , 2009 .

[123]  Otto F. Sankey,et al.  Making electrical contacts to molecular monolayers , 2002 .

[124]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[125]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[126]  B. de Boer,et al.  Electrical conduction through single molecules and self-assembled monolayers , 2008 .

[127]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[128]  S. Datta,et al.  CONDUCTANCE SPECTRA OF MOLECULAR WIRES , 1998 .

[129]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[130]  Büttiker Role of quantum coherence in series resistors. , 1986, Physical review. B, Condensed matter.

[131]  Juan Carlos Cuevas,et al.  The signature of chemical valence in the electrical conduction through a single-atom contact , 1998, Nature.

[132]  Eiiti Wada,et al.  Esaki Diode High-Speed Logical Circuits , 1960, IRE Trans. Electron. Comput..

[133]  Yuyuan Tian,et al.  Large gate modulation in the current of a room temperature single molecule transistor. , 2005, Journal of the American Chemical Society.

[134]  C. H. Patterson,et al.  Vibronic contributions to charge transport across molecular junctions , 2004 .

[135]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[136]  H. Kroemer Nano-Whatever: Do We Really Know Where We Are Heading? , 2009 .

[137]  Stefano Sanvito,et al.  Molecular-Spintronics: The Art of Driving Spin Through Molecules , 2006, cond-mat/0605239.

[138]  Mark E. Greene,et al.  Room Temperature Negative Differential Resistance through Individual Organic Molecules on Silicon Surfaces , 2004 .

[139]  Nanodevices and Maxwell's Demon , 2007, 0704.1623.

[140]  M. Hersam,et al.  Scanning tunneling microscopy study of single molecule motion on the Si(100)- 2×1 surface , 2005 .

[141]  Inelastic fingerprints of hydrogen contamination in atomic gold wire systems , 2006, cond-mat/0608510.

[142]  A. Ghosh,et al.  Rectification by charging: Contact-induced current asymmetry in molecular conductors , 2007, 0707.2367.

[143]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[144]  Chaiwat Engtrakul,et al.  Near-perfect conduction through a ferrocene-based molecular wire , 2005 .

[145]  Supriyo Bandyopadhyay,et al.  Observation of extremely long spin relaxation times in an organic nanowire spin valve. , 2007, Nature nanotechnology.

[146]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[147]  B. Muralidharan,et al.  Conductance in Coulomb blockaded molecules—fingerprints of wave-particle duality? , 2006 .

[148]  J. Tour,et al.  Vapor phase deposition of oligo"phenylene ethynylene… molecules for use in molecular electronic devices , 2007 .

[149]  Gengchiau Liang,et al.  Extended Hückel theory for band structure, chemistry, and transport. II. Silicon , 2006 .

[150]  R. Kiehl,et al.  Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions , 2006 .

[151]  Orlando,et al.  Landauer's conductance formula and its generalization to finite voltages. , 1989, Physical review. B, Condensed matter.

[152]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[153]  Avik W. Ghosh,et al.  Controlling transistor threshold voltages using molecular dipoles , 2008, 0807.3378.

[154]  Theory for transport through a single magnetic molecule: Endohedral N @ C 60 , 2004, cond-mat/0410641.

[155]  Supriyo Datta,et al.  Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy , 1997 .

[156]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[157]  S. Datta Proposal for a “spin capacitor” , 2005 .

[158]  Supriyo Bandyopadhyay,et al.  Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits , 2009, Nanotechnology.

[159]  S. Datta,et al.  Resistance of a molecule , 2002, cond-mat/0208183.

[160]  Orientational dependence of current through molecular films , 2001, cond-mat/0102307.

[161]  M. Lundstrom,et al.  On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors , 2005, IEEE Transactions on Electron Devices.

[162]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[163]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[164]  Kwan S. Kwok,et al.  Moletronics: future electronics , 2002 .

[165]  W. Aulbur,et al.  Quasiparticle calculations in solids , 2000 .

[166]  Probing electronic excitations in molecular conduction , 2005, cond-mat/0505375.

[167]  Yuyuan Tian,et al.  Controlling charge transport in single molecules using electrochemical gate. , 2006, Faraday discussions.

[168]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[169]  Tersoff,et al.  Schottky barriers and semiconductor band structures. , 1985, Physical review. B, Condensed matter.

[170]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[171]  J. Cerdá,et al.  Accurate and transferable extended Huckel-type tight-binding parameters , 2000 .

[172]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[173]  John C. Bean,et al.  Effects of molecular environments on the electrical switching with memory of nitro-containing OPEs , 2006 .

[174]  Arun Majumdar,et al.  Nanostructuring expands thermal limits , 2007 .

[175]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[176]  Robert A. Wolkow,et al.  Field regulation of single-molecule conductivity by a charged surface atom , 2005, Nature.

[177]  A. Wacker,et al.  Tunneling through nanosystems : Combining broadening with many-particle states , 2005, cond-mat/0509024.

[178]  Molecular Conduction: Paradigms and Possibilities , 2002, cond-mat/0303630.

[179]  S. Datta,et al.  A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics. , 2005, The Journal of chemical physics.

[180]  Supriyo Datta,et al.  Electrical Conduction through Molecules , 2003 .

[181]  A. Rahman,et al.  Assessment of Ge n-MOSFETs by quantum simulation , 2003, IEEE International Electron Devices Meeting 2003.

[182]  H.L. Stormer "Silicon forever! Really?" , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[183]  Phonon effects in molecular transistors: Quantal and classical treatment , 2003, cond-mat/0311503.

[184]  J. Inglesfield,et al.  Embedding at surfaces , 2001 .

[185]  J. Tucker,et al.  Quantum limited detection in tunnel junction mixers , 1979 .

[186]  Irena Knezevic,et al.  Electronic transport in nanometre-scale silicon-on-insulator membranes , 2006, Nature.