XMM-Newton observations of the supernova remnant IC 443: II. evidence of stellar ejecta in the inner regions.

Aims. We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, in order to get important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. Methods. We present XMM-Newton images of IC 443, median photon energymap, silicon and sulfur equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. Results. The hard X-ray thermal emission (1.4‐5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT>1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collisional ionization equilibrium model, and strong emission lines of Mg, Si, and S, requiring oversolar metal abundances. Dynamically, the location of the ejecta ring suggests an SNR age of∼4,000 yr. The presence of overionized plasma in the inner regions of IC 443, addressed in previous works, is much less evident in our observations.

[1]  A. Chilingarian,et al.  Discovery of Very High Energy Gamma Radiation from IC 443 with the MAGIC Telescope , 2007 .

[2]  Vyacheslav E. Zavlin,et al.  First X-Ray Observations of the Young Pulsar J1357–6429 , 2007, astro-ph/0703802.

[3]  V. Zavlin Studying millisecond pulsars in X-rays , 2006, astro-ph/0608210.

[4]  E. Troja,et al.  XMM-Newton Observations of the Supernova Remnant IC 443. I. Soft X-Ray Emission from Shocked Interstellar Medium , 2006, astro-ph/0606313.

[5]  J. Hughes,et al.  Can Ejecta-dominated Supernova Remnants be Typed from Their X-Ray Spectra? The Case of G337.2–0.7 , 2006, astro-ph/0604246.

[6]  F. Bocchino,et al.  The X-ray emission of the supernova remnant W49B observed with XMM-Newton , 2006, astro-ph/0602518.

[7]  M. Wardle,et al.  Green Bank Telescope Observations of IC 443: The Nature of OH (1720 MHz) Masers and OH Absorption , 2006, astro-ph/0602210.

[8]  F. Camilo,et al.  The X-Ray Structure of the Pulsar Bow Shock G189.22+2.90 in the Supernova Remnant IC 443 , 2006, astro-ph/0601304.

[9]  R. Petre,et al.  Ionization States and Plasma Structures of Mixed-Morphology Supernova Remnants Observed with ASCA , 2005, astro-ph/0507348.

[10]  P. Slane,et al.  Enhanced Abundances in Three Large-Diameter Mixed-Morphology Supernova Remnants , 2005, astro-ph/0505498.

[11]  A. Bykov,et al.  A Hard Extended X-Ray Source in the IC 443 Supernova Remnant Resolved by Chandra: A Fast Ejecta Fragment or a New Pulsar Wind Nebula? , 2005, astro-ph/0503700.

[12]  D. Hollenbach,et al.  Detection of Water in the Shocked Gas Associated with IC 443: Constraints on Shock Models , 2005 .

[13]  V. Dwarkadas The Evolution of Supernovae in Circumstellar Wind-Blown Bubbles. I. Introduction and One-Dimensional Calculations , 2004, astro-ph/0410464.

[14]  J. Hughes,et al.  Chandra Detection of Ejecta in the Small-Diameter Supernova Remnant G349.7+0.2 , 2004, astro-ph/0409592.

[15]  R. Petre,et al.  Chandra Observations and Models of the Mixed-Morphology Supernova Remnant W44: Global Trends , 2004, astro-ph/0407026.

[16]  D. Leahy 1420 and 408 MHz Continuum Observations of the IC 443/G189.6+3.3 Region , 2004 .

[17]  D. Burrows,et al.  Nucleosynthesis in the Oxygen-rich Supernova Remnant G292.0+1.8 from Chandra X-Ray Spectroscopy , 2003, astro-ph/0312637.

[18]  Garching,et al.  Multi-wavelength study of the G 82.2+5.3 supernova remnant , 2003, astro-ph/0311530.

[19]  T. P. Downes,et al.  An evolutionary model for pulsar-driven supernova remnants. A hydrodynamical model , 2003, astro-ph/0311388.

[20]  Department of Physics,et al.  XMM-Newton observation of Kepler's supernova remnant , 2003, astro-ph/0310687.

[21]  W. Reich,et al.  35 cm observations of a sample of large supernova remnants , 2003 .

[22]  Jessica S. Warren,et al.  Detection of Magnesium-rich Ejecta in the Middle-aged Supernova Remnant N49B , 2003, astro-ph/0306318.

[23]  U. Hwang,et al.  On the Determination of Ejecta Structure and Explosion Asymmetry from the X-Ray Knots of Cassiopeia A , 2003, astro-ph/0306119.

[24]  C. Badenes,et al.  Thermal X-Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants: Prospects for Explosion Mechanism Identification , 2003, astro-ph/0304552.

[25]  A. Bykov,et al.  XMM-Newton study of hard X-ray sources in IC 443 , 2003, astro-ph/0301141.

[26]  R. Gruendl,et al.  An Inside-Out View of Bubbles , 2002, astro-ph/0212152.

[27]  J. Hughes,et al.  Iron-rich Ejecta in the Supernova Remnant DEM L71 , 2002, astro-ph/0212118.

[28]  D. Burrows,et al.  X-Ray Emission from Multiphase Shock in the Large Magellanic Cloud Supernova Remnant N49 , 2002, astro-ph/0211552.

[29]  C. Brogan,et al.  The Sizes of OH (1720 MHz) Supernova Remnant Masers: MERLIN and Very Long Baseline Array Observations of IC 443 , 2002, astro-ph/0210071.

[30]  R. Petre,et al.  ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma , 2002, astro-ph/0202484.

[31]  O. Gnedin,et al.  Three types of cooling superfluid neutron stars: Theory and observations , 2001, astro-ph/0111429.

[32]  R. Chevalier,et al.  Bullets in a Core-Collapse Supernova Remnant: The Vela Remnant , 2001, astro-ph/0111373.

[33]  K. V. Heyden,et al.  X-ray spectral imaging and Doppler mapping of Cassiopeia A , 2001, astro-ph/0107270.

[34]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[35]  A. Bykov,et al.  The plerion nebula in IC 443: The XMM-Newton view , 2001, astro-ph/0106417.

[36]  U. Hwang,et al.  Chandra Detection of the Forward and Reverse Shocks in Cassiopeia A , 2001, astro-ph/0104161.

[37]  D. Frail,et al.  A Bow Shock Nebula around a Compact X-Ray Source in the Supernova Remnant IC 443 , 2001, astro-ph/0103268.

[38]  J. Rho,et al.  Near-Infrared Imaging and [O I] Spectroscopy of IC 443 using Two Micron All Sky Survey and Infrared Space Observatory , 2001 .

[39]  Robert Petre,et al.  Mapping the X-Ray-emitting Ejecta in Cassiopeia A with Chandra , 2000, astro-ph/0005560.

[40]  J. Rho,et al.  Mixed-Morphology Supernova Remnants , 1998 .

[41]  U. Wisconsin-Madison,et al.  Modeling W44 as a Supernova Remnant in a Density Gradient with a Partially Formed Dense Shell and Thermal Conduction in the Hot Interior. I. The Analytical Model , 1998, astro-ph/9806090.

[42]  R. Chevalier Supernova Remnants in Molecular Clouds , 1998, astro-ph/0102211.

[43]  D. Frail,et al.  Polarization Observations of 1720 MHz OH Masers toward the Three Supernova Remnants W28, W44, and IC 443 , 1997, astro-ph/9706067.

[44]  C. McKee,et al.  Evolution of Nonradiative Supernova Remnants , 1996 .

[45]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[46]  A. Fabian,et al.  The Three-dimensional Structure of the Cassiopeia A Supernova Remnant. I. The Spherical Shell , 1995 .

[47]  M. R. Haas,et al.  Shocked forbidden O I 63 micron line emission from the supernova remnant IC 443 , 1990 .

[48]  S. Mufson,et al.  Resolution of the Filaments in the Supernova Remnant IC 443 , 1989 .

[49]  R. Petre,et al.  The X-Ray Structure and Spectrum of IC 443 , 1988 .

[50]  L. Denoyer Observations of negative velocity hydrogen in IC 443 , 1978 .

[51]  L. Denoyer Neutral hydrogen associated with supernova remnants. II - IC 443 , 1977 .

[52]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[53]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[54]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[55]  I. Hoffman The Sizes of OH (1720 MHz) Supernova Remnant Masers: MERLIN and VLBA Observations of IC 443 , 2022 .