All‐Electrospun, Water‐Resistant, Breathable, Wearable, and Stable Metal Halide Perovskite Engineered Electroactive Polymer Textiles for Flexible Piezoelectric Nanogenerator

[1]  X. Hou,et al.  Heterojunction Engineering Enhanced Self‐Polarization of PVDF/CsPbBr3/Ti3C2T x Composite Fiber for Ultra‐High Voltage Piezoelectric Nanogenerator , 2023, Advanced science.

[2]  Ajay Kumar,et al.  Lead-Free Perovskite Cs3Bi2I9-Derived Electroactive PVDF Composite-Based Piezoelectric Nanogenerators for Physiological Signal Monitoring and Piezo-Phototronic-Aided Strained Modulated Photodetectors. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[3]  A. Rajabzadeh,et al.  Wearable and Flexible Electrodes in Nanogenerators for Energy Harvesting, Tactile Sensors, and Electronic Textiles: Novel Materials, Recent Advances, and Future Perspectives , 2022, Materials Today Sustainability.

[4]  Jun Chen,et al.  Smart Textiles for Healthcare and Sustainability. , 2022, ACS nano.

[5]  P. Maity,et al.  Phonon-Mediated Slow Hot Carrier Dynamics in Lead-Free Cs3Bi2I9 Perovskite Single Crystal. , 2022, Journal of Physical Chemistry Letters.

[6]  Sushmee Badhulika,et al.  Multilayered Piezoelectric Nanogenerator Based on Lead-Free Poly(vinylidene fluoride)-(0.67BiFeO3-0.33BaTiO3) Electrospun Nanofiber Mats for Fast Charging of Supercapacitors , 2022, ACS Applied Energy Materials.

[7]  Pooi See Lee,et al.  Stretchable, Breathable, and Stable Lead‐Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting , 2022, Advanced materials.

[8]  S. Ghosh,et al.  Revisiting δ-PVDF based piezoelectric nanogenerator for self-powered pressure mapping sensor , 2021, Applied Physics Letters.

[9]  Zhong Lin Wang,et al.  Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability Based on N Doped 4H-SiC Nanohole Arrays , 2021, Nano-Micro Letters.

[10]  D. Mandal,et al.  Piezo-phototronic Effect in Highly Stable CsPbI3-PVDF Composite for Self-Powered Nanogenerator and Photodetector , 2021, Nano Energy.

[11]  Jacek K. Stolarczyk,et al.  State of the Art and Prospects for Halide Perovskite Nanocrystals , 2021, ACS nano.

[12]  Zhong Lin Wang,et al.  Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays , 2021 .

[13]  Zhong Lin Wang,et al.  Flexible Piezoelectric Nanogenerators Based on P(VDF-TrFE)/CsPbBr3 Quantum Dot Composite Films , 2021 .

[14]  A. Hiltunen,et al.  Manganese Doping Promotes the Synthesis of Bismuth-based Perovskite Nanocrystals While Tuning Their Band Structures. , 2021, Small.

[15]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerator Based on In Situ Growth All‐Inorganic CsPbBr3 Perovskite Nanocrystals in PVDF Fibers with Long‐Term Stability , 2021, Advanced Functional Materials.

[16]  Qingsheng Zeng,et al.  Air Stable Organic-Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. , 2020, Small.

[17]  Zhiming M. Wang,et al.  Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO2-to-CO Photoreduction. , 2020, ACS nano.

[18]  K. Chattopadhyay,et al.  Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF , 2020, Nano Energy.

[19]  Soon-Gil Yoon,et al.  Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance , 2020 .

[20]  A. Toncelli,et al.  Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting , 2020, ACS applied materials & interfaces.

[21]  A. Pan,et al.  Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications , 2019, Nano Research.

[22]  D. Mandal,et al.  Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator. , 2019, ACS applied materials & interfaces.

[23]  S. Ogale,et al.  Microscopic Origin of Piezoelectricity in Lead-Free Halide Perovskite: Application in Nanogenerator Design , 2019, ACS Energy Letters.

[24]  Seungbum Hong,et al.  An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films , 2019, Nano Energy.

[25]  G. Lanzani,et al.  Broadband Defects Emission and Enhanced Ligand Raman Scattering in 0D Cs3Bi2I9 Colloidal Nanocrystals , 2018, Advanced Functional Materials.

[26]  Soon-Gil Yoon,et al.  A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3 , 2018, Nano Energy.

[27]  D. Mandal,et al.  Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application , 2018, Nano Energy.

[28]  Seungbum Hong,et al.  Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators , 2018, Nano Energy.

[29]  Dipankar Mandal,et al.  All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors. , 2018, ACS applied materials & interfaces.

[30]  S. Chakraborty,et al.  Synthesis and Optical Properties of Colloidal M3Bi2I9 (M = Cs, Rb) Perovskite Nanocrystals , 2018 .

[31]  D. Mandal,et al.  Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector. , 2018, ACS applied materials & interfaces.

[32]  Jianxin He,et al.  Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor , 2017, Scientific Reports.

[33]  Bin Yang,et al.  Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. , 2017, Angewandte Chemie.

[34]  Xiao Wei Sun,et al.  Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles , 2016 .

[35]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[36]  V. Kalra,et al.  Study of Co-electrospun Nafion and Polyaniline Nanofibers as Potential Catalyst Support for Fuel Cell Electrodes , 2016 .

[37]  Gerrit Boschloo,et al.  Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application , 2015, Advanced materials.

[38]  K. No,et al.  Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films , 2015, Scientific Reports.

[39]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[40]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system , 2013 .

[41]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.

[42]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[43]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Martijn Kemerink,et al.  Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol , 2008 .

[45]  M. Sillanpää,et al.  Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100–TiO2 for enhanced photocatalytic performance , 2020 .