Unifying Tunneling Pictures of Strong-Field Ionization with an Improved Attoclock.

We demonstrate a novel attoclock, in which we add a perturbative linearly polarized light field at 400 nm to calibrate the attoclock constructed by an intense circularly polarized field at 800 nm. This approach can be directly implemented to analyze the recent hot and controversial topics involving strong-field tunneling ionization. The generally accepted picture is that tunneling ionization is instantaneous and that the tunneling probability synchronizes with the laser electric field. Alternatively, recently it was described in the Wigner picture that tunneling ionization would occur with a certain of time delay. We unify the two seemingly opposite viewpoints within one theoretical framework, i.e., the strong-field approximation (SFA). We illustrate that both the instantaneous tunneling picture and the Wigner time delay picture that are derived from the SFA can interpret the measurement well. Our results show that the finite tunneling delay will accompany nonzero exit longitudinal momenta. This is not the case for the instantaneous tunneling picture, where the most probable exit longitudinal momentum would be zero.

[1]  R. T. Sang,et al.  Attosecond angular streaking and tunnelling time in atomic hydrogen , 2017, Nature.

[2]  J. Rost,et al.  Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet , 2018 .

[3]  Q. Gong,et al.  Universal Description of the Attoclock with Two-Color Corotating Circular Fields. , 2019, Physical review letters.

[4]  Michael Klaiber,et al.  Experimental Evidence for Quantum Tunneling Time. , 2016, Physical review letters.

[5]  H. Muller,et al.  Interpreting attoclock measurements of tunnelling times , 2014, Nature Physics.

[6]  J. Eberly,et al.  Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization. , 2017, Physical review letters.

[7]  Q. Gong,et al.  Experimental verification of the nonadiabatic effect in strong-field ionization with elliptical polarization , 2017 .

[8]  Q. Gong,et al.  Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields. , 2013, Physical review letters.

[9]  J. Rost,et al.  Tunneling Ionization Time Resolved by Backpropagation. , 2016, Physical review letters.

[10]  Siddhartha Mishra,et al.  Tunneling Time and Weak Measurement in Strong Field Ionization. , 2016, Physical review letters.

[11]  Q. Gong,et al.  Classical-quantum correspondence for above-threshold ionization. , 2014, Physical review letters.

[12]  Tian-Min Yan,et al.  Low-energy structures in strong field ionization revealed by quantum orbits. , 2010, Physical review letters.

[13]  Q. Gong,et al.  Calibration of the initial longitudinal momentum spread of tunneling ionization , 2014 .

[14]  D. Bauer,et al.  Strong field approximation for systems with Coulomb interaction , 2008, 0803.1972.

[15]  Ursula Keller,et al.  Ultrafast resolution of tunneling delay time , 2014 .

[16]  N. Eicke,et al.  Tunneling criteria and a nonadiabatic term for strong-field ionization , 2018, Physical Review A.

[17]  Dieter Bauer,et al.  Above-threshold ionization by few-cycle pulses , 2006 .

[18]  A. Kheifets,et al.  Keldysh-Rutherford Model for the Attoclock. , 2018, Physical review letters.

[19]  W. Schleich,et al.  The Wigner function for tunneling in a uniform static electric field 1 Dedicated to Marlan O. Scully , 2000 .

[20]  L. A. Maccoll Note on the Transmission and Reflection of Wave Packets by Potential Barriers , 1932 .

[21]  U. Keller,et al.  Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit. , 2012 .

[22]  Q. Gong,et al.  Attoclock Photoelectron Interferometry with Two-Color Corotating Circular Fields to Probe the Phase and the Amplitude of Emitting Wave Packets. , 2018, Physical review letters.

[23]  Rolf Landauer,et al.  Barrier interaction time in tunneling , 1994 .

[24]  K. Hatsagortsyan,et al.  The Wigner time delay for laser induced tunnel-ionization via the electron propagator , 2014, 1402.4382.

[25]  R. Dörner,et al.  Attosecond Ionization and Tunneling Delay Time Measurements in Helium , 2008, Science.

[26]  J. Biegert,et al.  Attosecond angular streaking , 2008 .

[27]  M. Spanner,et al.  Anatomy of strong field ionization , 2005 .

[28]  Dieter Bauer,et al.  Photoelectron spectra with Qprop and t-SURFF , 2016, Comput. Phys. Commun..

[29]  H. Bauke,et al.  Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization. , 2015, Physical review letters.

[30]  E. H. Hauge,et al.  Tunneling times: a critical review , 1989 .

[31]  Trajectory-free ionization times in strong-field ionization , 2018 .

[32]  U. Keller,et al.  Probing nonadiabatic effects in strong-field tunnel ionization. , 2013, Physical review letters.

[33]  H. Bauke,et al.  Under-the-barrier dynamics in laser-induced relativistic tunneling. , 2012, Physical review letters.

[34]  Q. Gong,et al.  Revealing the Sub-Barrier Phase using a Spatiotemporal Interferometer with Orthogonal Two-Color Laser Fields of Comparable Intensity. , 2017, Physical review letters.

[35]  Qihuang Gong,et al.  An accurate Fortran code for computing hydrogenic continuum wave functions at a wide range of parameters , 2010, Comput. Phys. Commun..

[36]  Joachim Ullrich,et al.  Recoil-ion and electron momentum spectroscopy: reaction-microscopes , 2003 .