The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

Abstract. The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site.

Chul-Un Ro | Bettina Weber | Ulrich Pöschl | Susan E. Trumbore | Meinrat O. Andreae | Henrique M. J. Barbosa | Jonathan Williams | N. L. Dias | Antonio O. Manzi | Nelson Luís Dias | Martin Heimann | Bruce Walker Nelson | Otávio C. Acevedo | Ivonne Trebs | Hang Su | Paulo Artaxo | Ricardo H. M. Godoi | Ana F. L. Godoi | Thorsten Hoffmann | Carlos A. Quesada | M. Heimann | B. Nelson | C. Quesada | C. Sales | M. Andreae | P. Artaxo | R. Souza | U. Pöschl | B. Weber | C. Pöhlker | H. Su | T. Hoffmann | A. Araùjo | A. Manzi | L. D. Sá | J. Tóta | S. Trumbore | Jonathan Williams | I. Trebs | S. Carbone | F. Wittmann | Aline P Lopes | O. Acevedo | C. Barbosa | H. Barbosa | J. Brito | X. Chi | B. B. L. Cintra | N. Silva | C. Q. Dias‐Júnior | F. Ditas | R. Ditz | A. Godoi | R. Godoi | J. Kesselmeier | T. Könemann | M. Krüger | J. Lavrič | D. Martins | E. Mikhailov | D. Moran-Zuloaga | A. Nölscher | D. Nogueira | M. Piedade | L. Rizzo | C. Ro | Nina Ruckteschler | M. Sá | R. M. N. D. Santos | Jorge Saturno | J. Schöngart | M. Sörgel | C. M. D. Souza | N. Targhetta | A. V. Eijck | D. Walter | Zhibin Wang | J. Winderlich | S. Wolff | A. Yáñez-Serrano | Jochen Schöngart | Maria Teresa Fernandez Piedade | J. Kesselmeier | A. C. Nölscher | Xuguang Chi | Florian Wittmann | Eugene Mikhailov | Joel Brito | Luciana V. Rizzo | Florian Ditas | Christopher Pöhlker | Jorge Saturno | Samara Carbone | Reiner Ditz | Tobias Könemann | Jošt V. Lavrič | Daniel Moran-Zuloaga | David Walter | Stefan Wolff | Zhibin Wang | Leonardo D. A. Sá | Cléo Q. Dias-Júnior | Julio Tóta | Matthias Sörgel | J. Winderlich | Natalia Targhetta | Bruno Barçante Ladvocat Cintra | Alessandro Carioca de Araújo | Mira L. Krüger | Cybelli G. G. Barbosa | N. F. da Silva | Aline Lopes | D. L. Martins | D. Santos Nogueira | Nina Ruckteschler | M. de Oliveira Sá | C. B. Sales | R. M. N. dos Santos | C. M. de Souza | R. A. F. de Souza | A. van Eijck | Ana Maria Yáñez-Serrano | A. Araújo | B. B. Cintra | N. Dias | L. Sá | R. D. Santos | Tobias Könemann | C. Pöhlker

[1]  Z. Sorbjan,et al.  Statistics of Turbulence in the Stable Boundary Layer Affected by Gravity Waves , 2013, Boundary-Layer Meteorology.

[2]  Tami C. Bond,et al.  Light absorption by primary particle emissions from a lignite burning plant , 1999 .

[3]  A qualitative review emphasizing climatic aspects of the Amazon and Northeast Brazil , 2010 .

[4]  D. Roberts,et al.  The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape , 2013, Proceedings of the National Academy of Sciences.

[5]  A. Betts,et al.  Contrasting convective regimes over the Amazon: Implications for cloud electrification , 2002 .

[6]  T. Tuch,et al.  Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites , 2009 .

[7]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[8]  A. Huete,et al.  Amazon rainforests green‐up with sunlight in dry season , 2006 .

[9]  M. Heimann,et al.  Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes , 2013 .

[10]  B. Poulter,et al.  Net biome production of the Amazon Basin in the 21st century , 2010 .

[11]  Turker Ince,et al.  Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers , 2004 .

[12]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[13]  N. Krusche,et al.  Characterization of Coherent structures in the Atmospheric Surface Layer , 2004 .

[14]  J. Tota,et al.  The convective boundary layer over pasture and forest in Amazonia , 2004 .

[15]  N. Gruber,et al.  A joint atmosphere‐ocean inversion for the estimation of seasonal carbon sources and sinks , 2013 .

[16]  C. Belis,et al.  Sources of carbonaceous aerosol in the Amazon basin , 2010 .

[17]  R. Barthem,et al.  The Smithsonian Atlas of the Amazon , 2003 .

[18]  Pieter P. Tans,et al.  Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program , 1998 .

[19]  E. Bou‐Zeid,et al.  Coherent Structures and the Dissimilarity of Turbulent Transport of Momentum and Scalars in the Unstable Atmospheric Surface Layer , 2011 .

[20]  E. Macau,et al.  Searching chaos and coherent structures in the atmospheric turbulence above the Amazon forest , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Carlos A. Morales,et al.  Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations , 2009 .

[22]  Barbara Fraser Deforestation: Carving up the Amazon , 2014, Nature.

[23]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[24]  M. Andreae,et al.  Spectral dependence of aerosol light absorption over the Amazon Basin , 2011 .

[25]  E. Patton Large-Eddy Simulation of Turbulent Flow Above and Within a Plant Canopy , 1997 .

[26]  S. Dupont,et al.  Coherent structures in canopy edge flow: a large-eddy simulation study , 2009, Journal of Fluid Mechanics.

[27]  J. Terborgh,et al.  Long-term decline of the Amazon carbon sink , 2015, Nature.

[28]  Thomas Foken,et al.  Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy , 2007 .

[29]  S. Martin,et al.  Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity , 2009 .

[30]  Robert J. Charlson,et al.  Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer , 1996 .

[31]  M. Andreae Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions , 2008 .

[32]  Michael T. Coe,et al.  The influence of historical and potential future deforestation on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks , 2008 .

[33]  F. Wittmann,et al.  Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees , 2013 .

[34]  G. Heinemann,et al.  Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland , 2007 .

[35]  Markus A. Weigand,et al.  The X-ray microscopy beamline UE46-PGM2 at BESSY , 2010 .

[36]  B. Soares-Filho,et al.  Modelling conservation in the Amazon basin , 2006, Nature.

[37]  Qi Zhang,et al.  An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol , 2011 .

[38]  Delphine Clara Zemp,et al.  Interactive comment on “ On the importance of cascading moisture recycling in South America ” by D . C . Zemp , 2014 .

[39]  J. Balch Atmospheric science: Drought and fire change sink to source , 2014, Nature.

[40]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[41]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[42]  A. Nobre,et al.  The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia , 2010 .

[43]  A. Holtslag,et al.  Exploring the possible role of small-scale terrain drag on stable boundary layers over land , 2008 .

[44]  D. Jacob,et al.  The atmospheric sulfur cycle over the Amazon Basin: 2. Wet season , 1990 .

[45]  Serge Collineau,et al.  Detection of turbulent coherent motions in a forest canopy part II: Time-scales and conditional averages , 1993 .

[46]  A. Holtslag,et al.  Estimation of orographically induced wave drag in the stable boundary layer during the CASES-99 experimental campaign , 2009 .

[47]  F. Wittmann,et al.  Biomass and Net Primary Production of Central Amazonian Floodplain Forests , 2010 .

[48]  D. Hollinger,et al.  Use of digital webcam images to track spring green-up in a deciduous broadleaf forest , 2007, Oecologia.

[49]  Jorge L. Sarmiento,et al.  Optimal sampling of the atmosphere for purpose of inverse modeling: A model study , 2000 .

[50]  Joseph T. Hodges,et al.  Photoacoustic Measurements of Amplification of the Absorption Cross Section for Coated Soot Aerosols , 2011 .

[51]  M. Andreae The Biosphere: Pilot or Passenger on Spaceship Earth? , 2001 .

[52]  G. A. D. da Fonseca,et al.  The Fate of the Amazonian Areas of Endemism , 2005 .

[53]  Stephen Sitch,et al.  The carbon balance of South America: a review of the status, decadal trends and main determinants , 2012 .

[54]  Philippe Ciais,et al.  Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2 , 2007, Science.

[55]  M. Heimann,et al.  The Zotino Tall Tower Observatory (ZOTTO): Quantifying large scale biogeochemical changes in Central Siberia , 2014 .

[56]  P. Dias,et al.  A case study of the direct radiative effect of biomass burning aerosols on precipitation in the Eastern Amazon. , 2009 .

[57]  P. Artaxo,et al.  Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest , 2015 .

[58]  Peter B. Vose,et al.  Amazon Basin: A System in Equilibrium , 1984, Science.

[59]  U. Pöschl,et al.  Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon , 2010, Science.

[60]  C. Nappo An introduction to atmospheric gravity waves , 2002 .

[61]  C. Williams,et al.  Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer , 2007 .

[62]  Thomas F. Eck,et al.  Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols , 2002 .

[63]  B. Campistron,et al.  Numerical Study Of The Impact Of Coherent Structures On Vertical Transfers In The Atmospheric Boundary Layer , 2000, Boundary-Layer Meteorology.

[64]  J. Terborgh,et al.  Drought Sensitivity of the Amazon Rainforest , 2009, Science.

[65]  J. Jimenez,et al.  A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data , 2004 .

[66]  T. Hoffmann,et al.  Natural Volatile Organic Compound Emissions from Plants and their Roles in Oxidant Balance and Particle Formation , 2009 .

[67]  T. Kirchstetter,et al.  Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources , 2002 .

[68]  P. Hari,et al.  A comprehensive network of measuring stations to monitor climate change , 2009 .

[69]  Jielun Sun,et al.  Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99 , 2012 .

[70]  J. Smith,et al.  Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado , 2013 .

[71]  O. Acevedo,et al.  Nocturnal Intermittent Coupling Between the Interior of a Pine Forest and the Air Above It , 2012, Boundary-Layer Meteorology.

[72]  Franz X. Meixner,et al.  Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA‐EUSTACH experiments , 2002 .

[73]  J. Birks,et al.  Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance. , 2006, Environmental science & technology.

[74]  F. D. Costa,et al.  A Simplified Model for Intermittent Turbulence in the Nocturnal Boundary Layer , 2011 .

[75]  M. Zeri,et al.  Horizontal and Vertical Turbulent Fluxes Forced by a Gravity Wave Event in the Nocturnal Atmospheric Surface Layer Over the Amazon Forest , 2011 .

[76]  D. Roberts,et al.  On intra-annual EVI variability in the dry season of tropical forest A case study with MODIS and hyperspectral data , 2011 .

[77]  M. Andreae,et al.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations , 2004 .

[78]  T. Petäjä,et al.  Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. , 2014, Annual review of physical chemistry.

[79]  Turker Ince,et al.  Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer , 2002 .

[80]  Serena H. Chung,et al.  Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign , 2011 .

[81]  J. Finnigan,et al.  Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange , 2011 .

[82]  W. Silver,et al.  Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil , 2009 .

[83]  R. Kurzeja,et al.  On the impact of wave-like disturbances on turbulent fluxes and turbulence statistics in nighttime conditions: a case study , 2013 .

[84]  P. Artaxo,et al.  Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia , 2013 .

[85]  H. Hakola,et al.  Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest , 2014 .

[86]  D. Baldocchi Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future , 2003 .

[87]  Francina Dominguez,et al.  Oceanic and terrestrial sources of continental precipitation , 2012 .

[88]  F. Porté-Agel,et al.  A Large-Eddy Simulation Study of Turbulent Flow Over Multiscale Topography , 2010 .

[89]  Deutsche Ausgabe World Reference Base for Soil Resources 2006 , 2007 .

[90]  A. Setzer,et al.  Biomass burning in Amazonia: Seasonal effects on atmospheric O3 and CO , 1989 .

[91]  S. Houweling,et al.  Methane airborne measurements and comparison to global models during BARCA , 2012 .

[92]  R. Draxler HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .

[93]  M. Andreae,et al.  Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene , 2004, Science.

[94]  Pieter P. Tans,et al.  Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009 , 2010 .

[95]  Reuven H. Heiblum,et al.  On the link between Amazonian forest properties and shallow cumulus cloud fields , 2013 .

[96]  J. Terborgh,et al.  Soil physical conditions limit palm and tree basal area in Amazonian forests , 2014 .

[97]  J. Lelieveld,et al.  Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements , 2008 .

[98]  A. Grelle,et al.  Flux-profile relationships over a boreal forest-roughness sublayer corrections , 1999 .

[99]  Alan K. Betts,et al.  The Amazonian Boundary Layer and Mesoscale Circulations , 2013 .

[100]  O. Phillips,et al.  Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia , 2015 .

[101]  Miguel Ángel Martínez,et al.  Atmospheric oxidation capacity sustained by a tropical forest , 2008, Nature.

[102]  R. DeFries,et al.  The Amazon basin in transition , 2012, Nature.

[103]  J. Osán,et al.  A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles. , 2003, Analytical chemistry.

[104]  J. Lelieveld,et al.  Using total OH reactivity to assess isoprene photooxidation via measurement and model , 2014 .

[105]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[106]  Ulrich Pöschl,et al.  Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08 , 2012 .

[107]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[108]  S. Martin,et al.  Sources and properties of Amazonian aerosol particles , 2010 .

[109]  Y. Lucas,et al.  On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil , 1987, Experientia.

[110]  Natália Targhetta COMPARAÇÃO FLORÍSTICA E ESTRUTURAL ENTRE FLORESTAS DE IGAPÓ E CAMPINARANA AO LONGO DE GRADIENTES HIDRO-EDÁFICOS NA RESERVA DE DESENVOLVIMENTO SUSTENTÁVEL DO UATUMÃ, AMAZÔNIA CENTRAL , 2012 .

[111]  M. Heimann,et al.  Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga , 2013 .

[112]  Yong Cai,et al.  Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies , 2008 .

[113]  K. McNaughton,et al.  Townsend's Hypothesis, Coherent Structures And Monin–Obukhov Similarity , 2000 .

[114]  A. Juo,et al.  A SINGLE‐EXTRACTION METHOD USING SILVER‐THIOUREA FOR MEASURING EXCHANGEABLE CATIONS AND EFFECTIVE CEC IN SOILS WITH VARIABLE CHARGES , 1980 .

[115]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[116]  M. Andreae,et al.  Contribution of cryptogamic covers to the global cycles of carbon and nitrogen , 2012 .

[117]  J. Lelieveld,et al.  Hydroxyl radical buffered by isoprene oxidation over tropical forests , 2012 .

[118]  K. E. Moore,et al.  Mechanisms of nocturnal exchange between the rain forest and the atmosphere , 1990 .

[119]  C. Nobre,et al.  Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia , 2014, PloS one.

[120]  M. D. Maso,et al.  Organic nitrate and secondary organic aerosol yield from NO 3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model , 2008 .

[121]  E. Dlugokencky,et al.  Airborne measurements indicate large methane emissions from the eastern Amazon basin , 2007 .

[122]  L. Hess,et al.  Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 , 2002, Nature.

[123]  G. Katul,et al.  Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest , 2004 .

[124]  P. M. Lang,et al.  CO 2 , CO, and CH 4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts , 2014 .

[125]  D. Schimel,et al.  Effect of increasing CO2 on the terrestrial carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[126]  J. Terborgh,et al.  Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate , 2012 .

[127]  F. Wittmann,et al.  Ecophysiology, Biodiversity and Sustainable Management of Central Amazonian Floodplain Forests: A Synthesis , 2010 .

[128]  S. Martin,et al.  Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08) , 2015 .

[129]  Edward Charles Fortner,et al.  Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning , 2014 .

[130]  Arthur Garforth,et al.  A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber , 2006 .

[131]  S. Sitch,et al.  Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study , 2015 .

[132]  Paulo Artaxo,et al.  The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon , 2013 .

[133]  S. Martin,et al.  Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon , 2012, Science.

[134]  Michael L. Goulden,et al.  Seasonal patterns of tropical forest leaf area index and CO2 exchange , 2008 .

[135]  M. E. Ferreira,et al.  Pervasive transition of the Brazilian land-use system , 2014 .

[136]  Y. H. Zhang,et al.  Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles , 2010 .

[137]  J. Lelieveld,et al.  Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010 , 2012 .

[138]  Klaus Pfeilsticker,et al.  ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO , 2016 .

[139]  Thomas Foken,et al.  Detection of long-term coherent exchange over spruce forest using wavelet analysis , 2005 .

[140]  A. Ohmura,et al.  Year-Round Observation of Longwave Radiative Flux Divergence in Greenland , 2007 .

[141]  C. Nobre,et al.  ‘Tipping points’ for the Amazon forest , 2009 .

[142]  J. Jimenez,et al.  Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin , 2009 .

[143]  P. Ciais,et al.  On the ability of a global atmospheric inversion to constrain variations of CO 2 fluxes over Amazonia , 2015 .

[144]  A. Nobre,et al.  Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient. , 2008, Ecological applications : a publication of the Ecological Society of America.

[145]  C. Quesada,et al.  Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus–Madeira interfluvial wetlands in Amazonia , 2013 .

[146]  Yadvinder Malhi,et al.  A comparison of plot‐based satellite and Earth system model estimates of tropical forest net primary production , 2015 .

[147]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[148]  M. Heimann,et al.  Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory , 2010 .

[149]  A. Hansel,et al.  Proton‐Transfer‐Reaction Mass Spectrometry (PTR‐MS): On‐Line Monitoring of Volatile Organic Compounds at pptv Levels , 1999 .

[150]  C. Nappo Sporadic breakdowns of stability in the PBL over simple and complex terrain , 1991 .

[151]  John C. Lin,et al.  Net fluxes of CO2 in Amazonia derived from aircraft observations , 2002 .

[152]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[153]  M. Garstang,et al.  Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport , 1990 .

[154]  S. Wofsy,et al.  What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network , 2013 .

[155]  Jeff Tollefson,et al.  Stopping deforestation: Battle for the Amazon , 2015, Nature.

[156]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[157]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .

[158]  Properties and Parameterization of the Stable Boundary Layer over Moderate Topography , 2003 .

[159]  J. Lelieveld,et al.  The Comparative Reactivity Method ? a new tool to measure total OH Reactivity in ambient air , 2007 .

[160]  Xiyan Xu,et al.  Stably stratified canopy flow in complex terrain , 2014 .

[161]  Y. Rudich,et al.  New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples. , 2005, Environmental science & technology.

[162]  Long term measurements of aerosol optical properties at a primary forest site in Amazonia , 2012 .

[163]  Oliver L. Phillips,et al.  Intensification of the Amazon hydrological cycle over the last two decades , 2013 .

[164]  L. Mahrt Characteristics of Submeso Winds in the Stable Boundary Layer , 2009 .

[165]  I C Edmundson,et al.  Particle size analysis , 2013 .

[166]  I. Vieira,et al.  Deforestation and threats to the biodiversity of Amazonia. , 2008, Brazilian journal of biology = Revista brasleira de biologia.

[167]  Y. Malhi,et al.  Spatial patterns and recent trends in the climate of tropical rainforest regions. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[168]  M. Andreae,et al.  Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia , 2002 .

[169]  H. Hansson,et al.  Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season , 2002 .

[170]  Philippe Ciais,et al.  Projected strengthening of Amazonian dry season by constrained climate model simulations , 2015 .

[171]  B. V. D. Wiel,et al.  Intermittent turbulence and oscillations in the stable boundary layer over land , 2002 .

[172]  Paulo Artaxo,et al.  Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. , 2013, Faraday discussions.

[173]  Ranga B. Myneni,et al.  A two-fold increase of carbon cycle sensitivity to tropical temperature variations , 2014, Nature.

[174]  R. Nemani,et al.  Persistent effects of a severe drought on Amazonian forest canopy , 2012, Proceedings of the National Academy of Sciences.

[175]  Pavel Kabat,et al.  Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site , 2002 .

[176]  Lawrence E. Hipps,et al.  On coherent structures in turbulence above and within agricultural plant canopies , 1992 .

[177]  C. Taylor,et al.  Observations of increased tropical rainfall preceded by air passage over forests , 2012, Nature.

[178]  Ulrich Pöschl,et al.  Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment , 2007 .

[179]  T. Elperin,et al.  A Hierarchy of Energy- and Flux-Budget (EFB) Turbulence Closure Models for Stably-Stratified Geophysical Flows , 2011, Boundary-Layer Meteorology.

[180]  T. Foken,et al.  Vertical and Horizontal Transport of Energy and Matter by Coherent Motions in a Tall Spruce Canopy , 2009 .

[181]  S. Martin,et al.  Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study , 2010 .

[182]  Cheng-Hsuan Lu,et al.  Seasonal and diurnal variations of coherent structures over a deciduous forest , 1994 .

[183]  E. Browell,et al.  Ozone measurements in Amazonia: Dry season versus wet season , 1990 .

[184]  M. Andreae,et al.  Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols , 2006 .

[185]  Wolfgang Lucht,et al.  Estimating the risk of Amazonian forest dieback. , 2010, The New phytologist.

[186]  M. Andreae,et al.  Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NO-NO2-O3 photostationary state and peroxy radical levels , 2012 .

[187]  Kalle Ruokolainen,et al.  Floristic patterns along a 43‐km long transect in an Amazonian rain forest , 2003 .

[188]  K. Soudani,et al.  Remote sensing: A green illusion , 2014, Nature.

[189]  M. Andreae,et al.  Efflorescence upon humidification? X‐ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration , 2014 .

[190]  Nicholas C. Coops,et al.  Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis , 2012 .

[191]  Michael T. Coe,et al.  Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales , 2013, Proceedings of the National Academy of Sciences.

[192]  J. Martins,et al.  Impact of biomass burning aerosols on precipitation in the Amazon: A modeling case study , 2009 .

[193]  P. Bakwin,et al.  What is the concentration footprint of a tall tower , 2001 .

[194]  J. Lelieveld,et al.  Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998 , 2001 .

[195]  Yadvinder Malhi,et al.  Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest , 2002 .

[196]  N. Palmer Effects of Tropical Deforestation on Climate and Agriculture , 2014 .

[197]  Larry Mahrt,et al.  Stratified Atmospheric Boundary Layers , 1999 .

[198]  O. Phillips,et al.  Drought impact on forest carbon dynamics and fluxes in Amazonia , 2015, Nature.

[199]  J. Prospero,et al.  Atmospheric transport of soil dust from Africa to South America , 1981, Nature.

[200]  J. Haywood,et al.  Fires increase Amazon forest productivity through increases in diffuse radiation , 2015 .

[201]  W. Arnott,et al.  Absorption Ångström coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles , 2010 .

[202]  G. Carrió,et al.  Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin , 2013 .

[203]  Ke Zhang,et al.  The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use , 2015, Global change biology.

[204]  Luana S. Basso,et al.  Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements , 2014, Nature.

[205]  John Moncrieff,et al.  Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993 , 1995, Science.

[206]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[207]  John B. Miller,et al.  Regional N 2 O fluxes in Amazonia derived from aircraft vertical profiles , 2009 .

[208]  A. Kostinski,et al.  Discernible rhythm in the spatio/temporal distributions of transatlantic dust , 2011 .

[209]  Charles Meneveau,et al.  Large‐eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness , 2004 .

[210]  Jeffrey Q. Chambers,et al.  TROPICAL FORESTS : AN EVALUATION AND SYNTHESIS OF EXISTING FIELD DATA , 2022 .

[211]  S. Wofsy,et al.  The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia , 2007 .

[212]  O. Acevedo,et al.  The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships , 2014 .

[213]  Reinder Ronda,et al.  Intermittent Turbulence and Oscillations in the Stable Boundary Layer over Land. Part I: A Bulk Model , 2002 .

[214]  S. Martin,et al.  An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08) , 2010 .

[215]  P. Dias,et al.  Amazonia and global change. , 2009 .

[216]  T. A. Black,et al.  A Simple Method of Estimating Scalar Fluxes Over Forests , 2009 .

[217]  C. M. D. Souza,et al.  Coherent structures detected in the unstable atmospheric surface layer above the Amazon forest , 2013 .

[218]  A. Hussain,et al.  Coherent structures and turbulence , 1986, Journal of Fluid Mechanics.

[219]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[220]  Jung-Hyun Kim,et al.  Amazon River carbon dioxide outgassing fuelled by wetlands , 2013, Nature.

[221]  C. Nobre,et al.  Characteristics of Amazonian Climate: Main Features , 2013 .

[222]  R. Engelmann,et al.  Further evidence for significant smoke transport from Africa to Amazonia , 2011 .

[223]  J.D.J. van Doesburg,et al.  Particle-size analysis and mineralogical analysis. , 1996 .

[224]  Ulrich Pöschl,et al.  Ambient Measurements of Biological Aerosol Particles Near Killarney, Ireland: a Comparison Between Real-time Fluorescence and Microscopy Techniques , 2014 .

[225]  M. Chamecki,et al.  Dimensionless criteria for the production‐dissipation equilibrium of scalar fluctuations and their implications for scalar similarity , 2012 .

[226]  Stephen Plummer,et al.  Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought , 2009 .

[227]  Eric Armijo,et al.  Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains , 2014, Science.

[228]  David J. Harding,et al.  Amazon forests maintain consistent canopy structure and greenness during the dry season , 2014, Nature.

[229]  D. Jacob,et al.  Budgets of reactive nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season , 1990 .

[230]  M. Heimann,et al.  Continuous low-maintenance CO 2 /CH 4 /H 2 O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia , 2010 .

[231]  S. Freitas,et al.  Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons , 2012 .

[232]  Alexander Smirnov,et al.  High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions , 2003 .

[233]  M. Andreae,et al.  Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions , 2010 .

[234]  E Hirst,et al.  Single particle multichannel bio-aerosol fluorescence sensor. , 2005, Optics express.

[235]  T. Stadler,et al.  Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.

[236]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[237]  M. Garstang,et al.  Rainfall and surface kinematic conditions over central amazonia during able-2b , 1990 .

[238]  J. Ogren,et al.  Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer , 1998 .

[239]  Franz X. Meixner,et al.  Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment , 2012 .

[240]  T. Bond,et al.  Truncation and Angular-Scattering Corrections for Absorbing Aerosol in the TSI 3563 Nephelometer , 2009 .

[241]  Werner Lindinger,et al.  Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels , 1998 .

[242]  Jingchuan Zhou,et al.  Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent? , 2001 .

[243]  M. Andreae,et al.  Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia , 2007 .

[244]  Bai-lian Li,et al.  Wavelet Analysis of Coherent Structures at the Atmosphere-Forest Interface. , 1993 .

[245]  Meinrat O. Andreae,et al.  Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds , 2005 .

[246]  M. Garstang,et al.  Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region , 2002 .

[247]  Atmospheric turbulence within and above an Amazon forest , 2004, physics/0402028.

[248]  J. Lelieveld,et al.  Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load , 2010 .

[249]  Ranga B. Myneni,et al.  Chapter 6: Carbon and Other Biogeochemical Cycles , 2014 .

[250]  J. Tóta,et al.  Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition , 2012, TheScientificWorldJournal.

[251]  Roger A. Pielke,et al.  Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study , 2006 .

[252]  S. Freitas,et al.  An airborne regional carbon balance for Central Amazonia , 2007 .

[253]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[254]  Ü. Rannik,et al.  Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology , 2000 .

[255]  A. Arneth,et al.  Variations in chemical and physical properties of Amazon forest soils in relation to their genesis , 2010 .

[256]  C. Nappo,et al.  Wave drag in the planetary boundary layer over complex terrain , 1989 .

[257]  M. Andreae,et al.  Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondônia (Amazonia) , 2002 .

[258]  Johannes W. Kaiser,et al.  Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America , 2015 .