Bad Data Identification Methods In Power System State Estimation-A Comparative Study

The identification techniques available today are first classified into three broad classes. Their behaviour with respect to selected criteria are then explored and assessed. Further, a series of simulations are carried out with various types of bad data. Investigating the way these identification techniques behave allows completing and validating the theoretical comparisons and conclusions.

[1]  K.l. Lo,et al.  Development of a Static State Estimator Part I: Estimation and Bad Data Suppression , 1983, IEEE Transactions on Power Apparatus and Systems.

[2]  Lamine Mili,et al.  Decision theory applied to bad data identification in power system state estimation , 1985 .

[3]  W. Stadlin,et al.  Network Flow Linear Programming Techniques and Their Application to Fuel Scheduling and Contingency Analysis , 1984, IEEE Transactions on Power Apparatus and Systems.

[4]  W. F. Tinney,et al.  Sparse Vector Methods , 1985, IEEE Transactions on Power Apparatus and Systems.

[5]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[6]  Fred C. Schweppe,et al.  Bad Data Suppression in Power System Static State Estimation , 1971 .

[7]  M. Vidyasagar,et al.  Bad Data Rejection Properties of Weughted Least Absolute Value Techniques Applied to Static State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[8]  Felix F. Wu,et al.  Mutiple Bad Data Identwication for State Estimation by Combinatorial Oftimization , 1986, IEEE Transactions on Power Delivery.

[9]  M. Kurzyn Real-Time State Estimation for Large-Scale Power Systems , 1983, IEEE Transactions on Power Apparatus and Systems.

[10]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[11]  A. Simoes-Costa,et al.  Bad Data Detection and Identification Techniques Using Estimation Orthogonal Methods , 1982, IEEE Transactions on Power Apparatus and Systems.

[12]  A. Monticelli,et al.  Reliable Bad Data Processing for Real-Time State Estimation , 1983, IEEE Power Engineering Review.

[13]  Xiang De,et al.  An Application of Estimation-Identification Approach of Multiple Bad Data in Power System State Estimation , 1984, IEEE Power Engineering Review.

[14]  Jürg Kohlas On bad data suppression in estimation , 1972 .

[15]  F. Broussolle,et al.  State Estimation in Power Systems: Detecting Bad Data through the Sparse Inverse Matrix Method , 1978, IEEE Transactions on Power Apparatus and Systems.

[16]  G. Krumpholz,et al.  Power System State Estimation Residual Analysis: An Algorithm Using Network Topology , 1981, IEEE Transactions on Power Apparatus and Systems.

[17]  Yu Er-keng,et al.  A New Approach for Detection and Identification of Multiple Bad Data in Power System State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[18]  Charles A. Gibson,et al.  The Interaction of Economic Dispatch Fuel Pricing and the Optimal Procurement of Fuel , 1983, IEEE Transactions on Power Apparatus and Systems.

[19]  F. Broussolle,et al.  Fast Method for Bad Data Identification in Power System State Estimation , 1977 .

[20]  A. Monticelli,et al.  Fast Decoupled State Estimation and Bad Data Processing , 1979, IEEE Transactions on Power Apparatus and Systems.

[21]  M. Ribbens-Pavella,et al.  Hypothesis Testing Identification: A New Method for Bad Data Analysis in Power System State Estimation , 1984, IEEE Power Engineering Review.