A Smoothing Algorithm for Nonlinear Time Series

A new NARMA based smoothing algorithm is introduced for chaotic and nonchaotic time series. The new algorithm employs a cross-validation method to determine the smoother structure, requires very little user interaction, and can be combined with wavelet thresholding to further enhance the noise reduction. Numerical examples are included to illustrate the application of the new algorithm.

[1]  Sheng Chen,et al.  Identification of non-linear output-affine systems using an orthogonal least-squares algorithm , 1988 .

[2]  A. Bhowal,et al.  Noise reduction in chaotic time series data , 1999 .

[3]  Eduardo M. A. M. Mendes,et al.  Smoothing data with Local Instabilities for the Identification of Chaotic Systems. , 1996 .

[4]  Stephen A. Billings,et al.  Nonlinear model validation using correlation tests , 1994 .

[5]  Kevin Judd,et al.  Dangers of geometric filtering , 1993 .

[6]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[7]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  M. E. Davies,et al.  Nonlinear noise reduction through Monte Carlo sampling. , 1998, Chaos.

[9]  P. White,et al.  ITERATIVE SVD METHOD FOR NOISE REDUCTION OF LOW-DIMENSIONAL CHAOTIC TIME SERIES , 1999 .

[10]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[11]  Daniel Coca,et al.  Non-linear system identification using wavelet multiresolution models , 2001 .

[12]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[13]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[14]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[15]  Holger Kantz,et al.  Observing and Predicting Chaotic Signals: Is 2% Noise Too Much? , 1996 .

[16]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .