Investigation on dynamic tool deflection and runout-dependent analysis of the micro-milling process

[1]  E. Budak,et al.  Alternative experimental methods for machine tool dynamics identification: A review , 2022, Mechanical Systems and Signal Processing.

[2]  Hongrui Cao,et al.  Chatter stability analysis in Micro-milling with aerostatic spindle considering speed effect , 2022, Mechanical Systems and Signal Processing.

[3]  Jinting Xu,et al.  State dependent regenerative stability and surface location error in peripheral milling of thin-walled parts , 2021 .

[4]  Kunpeng Zhu,et al.  In-situ tool wear area evaluation in micro milling with considering the influence of cutting force , 2021 .

[5]  Liang Li,et al.  Advances in micro milling: From tool fabrication to process outcomes , 2021 .

[6]  Zhenghua Yan,et al.  Chatter stability analysis for milling with single-delay and multi-delay using combined high-order full-discretization method , 2020, The International Journal of Advanced Manufacturing Technology.

[7]  Huaizhong Li,et al.  Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling , 2020 .

[8]  Yu Zhang,et al.  Generic instantaneous force modeling and comprehensive real engagement identification in micro-milling , 2020 .

[9]  Tony L. Schmitz,et al.  Multi-point coupling for tool point receptance prediction , 2019, Journal of Manufacturing Processes.

[10]  V. Kartik,et al.  Stability modeling with dynamic run-out in high speed micromilling of Ti6Al4V , 2019, International Journal of Mechanical Sciences.

[11]  Karali Patra,et al.  A hybrid modelling approach towards prediction of cutting forces in micro end milling of Ti-6Al-4V titanium alloy , 2019, International Journal of Mechanical Sciences.

[12]  Steffen Ihlenfeldt,et al.  Chatter prediction for uncertain parameters , 2018, Advances in Manufacturing.

[13]  Xibin Wang,et al.  Surface location error prediction and stability analysis of micro-milling with variation of tool overhang length , 2018, The International Journal of Advanced Manufacturing Technology.

[14]  Kai Cheng,et al.  Investigation on Innovative Dynamic Cutting Force Modelling in Micro-milling and Its Experimental Validation , 2018 .

[15]  Yun Yang,et al.  A new method using double distributed joint interface model for three-dimensional dynamics prediction of spindle-holder-tool system , 2018 .

[16]  K. Cheng,et al.  An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools , 2018 .

[17]  Bin Qi,et al.  Tool point frequency response function prediction using RCSA based on Timoshenko beam model , 2017 .

[18]  Zhibing Liu,et al.  Third-order updated full-discretization method for milling stability prediction , 2017 .

[19]  Fujun Wang,et al.  A runout measuring method using modeling and simulation cutting force in micro end-milling , 2017 .

[20]  Wanshan Wang,et al.  Cutting forces in micro-end-milling processes , 2016 .

[21]  Tony L. Schmitz,et al.  A New Metric for Automated Stability Identification in Time Domain Milling Simulation , 2016 .

[22]  Tao Mei,et al.  A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling , 2016 .

[23]  Dong Yang,et al.  Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill , 2015 .

[24]  Erhan Budak,et al.  In-process tool point FRF identification under operational conditions using inverse stability solution , 2015 .

[25]  P. Rodríguez,et al.  Tool deflection model for micromilling processes , 2015 .

[26]  Svetan Ratchev,et al.  Effects of micro-milling conditions on the cutting forces and process stability , 2013 .

[27]  Yinuo Shi,et al.  Gyroscopic and mode interaction effects on micro-end mill dynamics and chatter stability , 2013 .

[28]  P. Rodríguez,et al.  A new model for the prediction of cutting forces in micro-end-milling operations , 2013 .

[29]  Martin B.G. Jun,et al.  Modeling of minimum uncut chip thickness in micro machining of aluminum , 2012 .

[30]  Uttara Kumar,et al.  Modeling and experimentation for three-dimensional dynamics of endmills , 2012 .

[31]  Gábor Stépán,et al.  State dependent regenerative effect in milling processes , 2011 .

[32]  Tony L. Schmitz,et al.  Torsional and axial frequency response prediction by RCSA , 2010 .

[33]  Weihong Zhang,et al.  New procedures for calibration of instantaneous cutting force coefficients and cutter runout parameters in peripheral milling , 2009 .

[34]  Martin B.G. Jun,et al.  Modeling of dynamic micro-milling cutting forces , 2009 .

[35]  Gábor Stépán,et al.  On the chatter frequencies of milling processes with runout , 2008 .

[36]  Tony L. Schmitz,et al.  Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling , 2007 .

[37]  Chengfeng Li,et al.  Modeling of three-dimensional cutting forces in micro-end-milling , 2007 .

[38]  Ibrahim N. Tansel,et al.  Modeling micro-end-milling operations. Part II: tool run-out , 2000 .

[39]  Tony L. Schmitz,et al.  Predicting High-Speed Machining Dynamics by Substructure Analysis , 2000 .

[40]  H. Zahouani,et al.  Understanding and quantification of elastic and plastic deformation during a scratch test , 1998 .

[41]  John W. Sutherland,et al.  An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems , 1986 .

[42]  Richard E. DeVor,et al.  The effect of runout on cutting geometry and forces in end milling , 1983 .

[43]  R. Johnson,et al.  Functional equations, approximations, and dynamic response of systems with variable time delay , 1972 .