Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[3]  L. Compagno,et al.  Sharks of the world :an annotated and illustrated catalogue of shark species known to date , 1984 .

[4]  L. Compagno FAO species catalogue. v. 4: (2) Sharks of the world. An annotated and illustrated catalogue of shark species known to date, pt. 2: Carcharhiniformes , 1984 .

[5]  L. Compagno,et al.  Sharks of the World , 1985 .

[6]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[7]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[8]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[9]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[10]  G. Wahba Spline models for observational data , 1990 .

[11]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[12]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[13]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[14]  W. Greene,et al.  Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models , 1994 .

[15]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[16]  G. Kitagawa,et al.  Generalised information criteria in model selection , 1996 .

[17]  Gunnar Stefánsson,et al.  Analysis of groundfish survey abundance data: combining the GLM and delta approaches , 1996 .

[18]  J. S. Long,et al.  Regression Models for Categorical and Limited Dependent Variables , 1997 .

[19]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[20]  K. Bigelow,et al.  Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery , 1999 .

[21]  Geographical distributions of effort and catches of tunas by purse-seine vessels in the Eastern Pacific Ocean during 1965-1998 , 1999 .

[22]  H. Nakano,et al.  Species Composition and CPUE of Pelagic Sharks Caught by Japanese Longline Research and Training Vessels in the Pacific Ocean , 1999 .

[23]  A. Punt,et al.  Standardization of catch and effort data in a spatially-structured shark fishery , 2000 .

[24]  D. Hall Zero‐Inflated Poisson and Binomial Regression with Random Effects: A Case Study , 2000, Biometrics.

[25]  Pierre Kleiber,et al.  Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery , 2001 .

[26]  Y. Ye,et al.  Use of generalized linear models to analyze catch rates having zero values: the Kuwait driftnet fishery , 2001 .

[27]  J. Hinde,et al.  A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives , 2001, Biometrics.

[28]  R. Hueter,et al.  Results of a fishery-independent survey for pelagic sharks in the western North Atlantic, 1977–1994 , 2002 .

[29]  Malcolm J. Faddy,et al.  A general approach to modeling and analysis of species abundance data with extra zeros , 2002 .

[30]  A. Welsh,et al.  Generalized additive modelling and zero inflated count data , 2002 .

[31]  Malcolm J. Faddy,et al.  Use of binary and truncated negative binomial modelling in the analysis of recreational catch data , 2003 .

[32]  S. Wood Thin plate regression splines , 2003 .

[33]  A. Punt,et al.  Standardizing catch and effort data: a review of recent approaches , 2004 .

[34]  S. Candy,et al.  MODELLING CATCH AND EFFORT DATA USING GENERALISED LINEAR MODELS, THE TWEEDIE DISTRIBUTION, RANDOM VESSEL EFFECTS AND RANDOM STRATUM-BY-YEAR EFFECTS , 2004 .

[35]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[36]  R. Campbell CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models , 2004 .

[37]  Richard D. Methot,et al.  A generalized linear mixed model analysis of a multi-vessel fishery resource survey , 2004 .

[38]  Alan E. Gelfand,et al.  Zero-inflated models with application to spatial count data , 2002, Environmental and Ecological Statistics.

[39]  J. Gomes,et al.  Do local environmental factors induce daily and yearly variability in bluefin tuna (Thunnus thynnus) trap catches , 2004 .

[40]  M. Ortiz,et al.  Alternative error distribution models for standardization of catch rates of non-target species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery , 2004 .

[41]  Y. Ye,et al.  Constructing abundance indices from scientific surveys of different designs for the Torres Strait ornate rock lobster (Panulirus ornatus) fishery, Australia , 2005 .

[42]  Ransom A. Myers,et al.  SHIFTS IN OPEN‐OCEAN FISH COMMUNITIES COINCIDING WITH THE COMMENCEMENT OF COMMERCIAL FISHING , 2005 .

[43]  Bycatches of sharks in the tuna purse-seine fishery of the eastern Pacific Ocean reported by observers of the Inter-American Tropical Tuna Commission, 1993-2004 , 2005 .

[44]  John A. Nelder,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[45]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[46]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.