The $G_2$ geometry of $3$-Sasaki structures

We initiate a systematic study of the deformation theory of the second Einstein metric g 1{ ? 5 respectively the proper nearly G2 structure φ1{ ? 5 of a 3-Sasaki manifold pM, gq. We show that infinitesimal Einstein deformations for g 1{ ? 5 coincide with infinitesimal G2 deformations for φ 1{ ? 5 . The latter are showed to be parametrised by eigenfunctions of the basic Laplacian of g, with eigenvalue twice the Einstein constant of the 4-dimensional base orbifold, via an explicit differential operator. In terms of this parametrisation we determine those infinitesimal G2 deformations which are unobstructed to second order. 2000 Mathematics Subject Classification: Primary 53C25, 58H15, 53C10, 58J50, 57R57.

[1]  Thomas Murphy,et al.  Destabilising compact warped product Einstein manifolds , 2021, Communications in Analysis and Geometry.

[2]  Chenxu He,et al.  Linear stability of Perelman's $ν$-entropy on symmetric spaces of compact type , 2013, 1304.2697.

[3]  Changliang Wang,et al.  Stability of Einstein Metrics on Fiber Bundles , 2018, The Journal of Geometric Analysis.

[4]  M. Wang,et al.  Instability of some Riemannian manifolds with real Killing spinors , 2018, 1810.04526.

[5]  Stuart J. Hall The canonical Einstein metric on G2 is dynamically unstable under the Ricci flow , 2018, Bulletin of the London Mathematical Society.

[6]  飛成 早乙女,et al.  Differential geometric study of strongly pseudo-convex manifolds , 2009 .

[7]  Andrei Moroianu,et al.  Killing and conformal Killing tensors , 2015, 1512.03734.

[8]  DYNAMIC INSTABILITY OF CP UNDER RICCI FLOW , 2017 .

[9]  Craig van Coevering,et al.  Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability , 2013, 1312.3686.

[10]  Klaus Kroencke Stability of Einstein metrics under Ricci flow , 2013, 1312.2224.

[11]  Lorenzo Foscolo,et al.  Deformation theory of nearly Kähler manifolds , 2016, J. Lond. Math. Soc..

[12]  Michel Rumin,et al.  Formes différentielles sur les variétés de contact , 1994 .

[13]  Uwe Semmelmann,et al.  Deformations of nearly parallel $G_2$-structures , 2011, 1101.2143.

[14]  H. Pedersen,et al.  Selfdual Einstein Metrics with Torus Symmetry , 2001, math/0105263.

[15]  Y. Poon,et al.  A note on rigidity of 3-Sasakian manifolds , 1999 .

[16]  Jason D. Lotay,et al.  Examples of deformed G2-instantons/Donaldson–Thomas connections , 2020, Annales de l'Institut Fourier.

[17]  Ken Richardson,et al.  Transverse conformal Killing forms and a Gallot–Meyer theorem for foliations , 2008, 0805.4187.

[18]  Craig van Coevering Deformations of Killing spinors on Sasakian and 3-Sasakian manifolds , 2013, 1301.3479.

[19]  Recently D. Joyce On Nearly Parallel G 2-Structures , 1995 .

[20]  S. Hartnoll,et al.  Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons , 2002, hep-th/0208031.

[21]  E. Rees,et al.  Compact 3-Sasakian 7-manifolds with arbitrary second Betti number , 1998 .

[22]  S. Ivanov,et al.  The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011, The Journal of Geometric Analysis.

[23]  N. Koiso Rigidity and stability of Einstein metrics---the case of compact symmetric spaces , 1980 .

[24]  Ken Richardson,et al.  Lichnerowicz and Obata theorems for foliations , 2002 .

[25]  R. Bryant Some remarks on G2-structures , 2006 .

[26]  S. Salamon,et al.  Betti numbers of 3-Sasakian manifolds , 1996 .

[27]  Stuart J. Hall,et al.  Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow , 2018, The Journal of Geometric Analysis.

[28]  Gonçalo Oliveira,et al.  Gauge theory on Aloff–Wallach spaces , 2016, Geometry & Topology.

[29]  K. Kröncke Stability and instability of Ricci solitons , 2014, 1403.3721.