The $G_2$ geometry of $3$-Sasaki structures
暂无分享,去创建一个
[1] Thomas Murphy,et al. Destabilising compact warped product Einstein manifolds , 2021, Communications in Analysis and Geometry.
[2] Chenxu He,et al. Linear stability of Perelman's $ν$-entropy on symmetric spaces of compact type , 2013, 1304.2697.
[3] Changliang Wang,et al. Stability of Einstein Metrics on Fiber Bundles , 2018, The Journal of Geometric Analysis.
[4] M. Wang,et al. Instability of some Riemannian manifolds with real Killing spinors , 2018, 1810.04526.
[5] Stuart J. Hall. The canonical Einstein metric on G2 is dynamically unstable under the Ricci flow , 2018, Bulletin of the London Mathematical Society.
[6] 飛成 早乙女,et al. Differential geometric study of strongly pseudo-convex manifolds , 2009 .
[7] Andrei Moroianu,et al. Killing and conformal Killing tensors , 2015, 1512.03734.
[8] DYNAMIC INSTABILITY OF CP UNDER RICCI FLOW , 2017 .
[9] Craig van Coevering,et al. Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability , 2013, 1312.3686.
[10] Klaus Kroencke. Stability of Einstein metrics under Ricci flow , 2013, 1312.2224.
[11] Lorenzo Foscolo,et al. Deformation theory of nearly Kähler manifolds , 2016, J. Lond. Math. Soc..
[12] Michel Rumin,et al. Formes différentielles sur les variétés de contact , 1994 .
[13] Uwe Semmelmann,et al. Deformations of nearly parallel $G_2$-structures , 2011, 1101.2143.
[14] H. Pedersen,et al. Selfdual Einstein Metrics with Torus Symmetry , 2001, math/0105263.
[15] Y. Poon,et al. A note on rigidity of 3-Sasakian manifolds , 1999 .
[16] Jason D. Lotay,et al. Examples of deformed G2-instantons/Donaldson–Thomas connections , 2020, Annales de l'Institut Fourier.
[17] Ken Richardson,et al. Transverse conformal Killing forms and a Gallot–Meyer theorem for foliations , 2008, 0805.4187.
[18] Craig van Coevering. Deformations of Killing spinors on Sasakian and 3-Sasakian manifolds , 2013, 1301.3479.
[19] Recently D. Joyce. On Nearly Parallel G 2-Structures , 1995 .
[20] S. Hartnoll,et al. Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons , 2002, hep-th/0208031.
[21] E. Rees,et al. Compact 3-Sasakian 7-manifolds with arbitrary second Betti number , 1998 .
[22] S. Ivanov,et al. The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011, The Journal of Geometric Analysis.
[23] N. Koiso. Rigidity and stability of Einstein metrics---the case of compact symmetric spaces , 1980 .
[24] Ken Richardson,et al. Lichnerowicz and Obata theorems for foliations , 2002 .
[25] R. Bryant. Some remarks on G2-structures , 2006 .
[26] S. Salamon,et al. Betti numbers of 3-Sasakian manifolds , 1996 .
[27] Stuart J. Hall,et al. Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow , 2018, The Journal of Geometric Analysis.
[28] Gonçalo Oliveira,et al. Gauge theory on Aloff–Wallach spaces , 2016, Geometry & Topology.
[29] K. Kröncke. Stability and instability of Ricci solitons , 2014, 1403.3721.