Global optimization of Lipschitz functions
暂无分享,去创建一个
[1] B. Shubert. A Sequential Method Seeking the Global Maximum of a Function , 1972 .
[2] S. A. Piyavskii. An algorithm for finding the absolute extremum of a function , 1972 .
[3] Regina Hunter Mladineo. An algorithm for finding the global maximum of a multimodal, multivariate function , 1986, Math. Program..
[4] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[5] G. T. Timmer,et al. Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..
[6] A. A. Zhigli︠a︡vskiĭ,et al. Theory of Global Random Search , 1991 .
[7] Robert L. Smith,et al. Pure adaptive search in global optimization , 1992, Math. Program..
[8] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[9] János D. Pintér,et al. Global optimization in action , 1995 .
[10] B. P. Zhang,et al. Estimation of the Lipschitz constant of a function , 1996, J. Glob. Optim..
[11] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[12] Arnold Neumaier,et al. Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..
[13] D. Finkel,et al. Convergence analysis of the direct algorithm , 2004 .
[14] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[15] M. Ali,et al. Some Variants of the Controlled Random Search Algorithm for Global Optimization , 2006 .
[16] Steve Hanneke. Rates of convergence in active learning , 2011, 1103.1790.
[17] Adam D. Bull,et al. Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..
[18] Jia Yuan Yu,et al. Lipschitz Bandits without the Lipschitz Constant , 2011, ALT.
[19] Sanjoy Dasgupta,et al. Two faces of active learning , 2011, Theor. Comput. Sci..
[20] Rémi Munos,et al. Stochastic Simultaneous Optimistic Optimization , 2013, ICML.
[21] Nikolaos V. Sahinidis,et al. Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..
[22] Xin-She Yang,et al. A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.
[23] Rémi Munos,et al. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning , 2014, Found. Trends Mach. Learn..
[24] Philippe Preux,et al. Bandits attack function optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).
[25] Ruben Martinez-Cantin,et al. BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits , 2014, J. Mach. Learn. Res..
[26] Rémi Munos,et al. Black-box optimization of noisy functions with unknown smoothness , 2015, NIPS.
[27] Nicolas Vayatis,et al. A ranking approach to global optimization , 2016, ICML.
[28] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.