On Bending Invariant Signatures for Surfaces

Isometric surfaces share the same geometric structure, also known as the "first fundamental form." For example, all possible bendings of a given surface that includes all length preserving deformations without tearing or stretching the surface are considered to be isometric. We present a method to construct a bending invariant signature for such surfaces. This invariant representation is an embedding of the geometric structure of the surface in a small dimensional Euclidean space in which geodesic distances are approximated by Euclidean ones. The bending invariant representation is constructed by first measuring the intergeodesic distances between uniformly distributed points on the surface. Next, a multidimensional scaling technique is applied to extract coordinates in a finite dimensional Euclidean space in which geodesic distances are replaced by Euclidean ones. Applying this transform to various surfaces with similar geodesic structures (first fundamental form) maps them into similar signature surfaces. We thereby translate the problem of matching nonrigid objects in various postures into a simpler problem of matching rigid objects. As an example, we show a simple surface classification method that uses our bending invariant signatures.

[1]  Olivier D. Faugeras,et al.  A 3-D Recognition and Positioning Algorithm Using Geometrical Matching Between Primitive Surfaces , 1983, IJCAI.

[2]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[3]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[4]  P. Besl Geometric modeling and computer vision , 1988, Proc. IEEE.

[5]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Paul J. Besl,et al.  The Free-Form Surface Matching Problem , 1990 .

[7]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[8]  Arthur R. Pope Model-Based Object Recognition - A Survey of Recent Research , 1994 .

[9]  Paul J. Besl Triangles as a Primary Representation , 1994, Object Representation in Computer Vision.

[10]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  Micha Sharir,et al.  Partial surface and volume matching in three dimensions , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[12]  Neil A. Thacker,et al.  Robust Recognition of Scaled Shapes using Pairwise Geometric Histograms , 1995, BMVC.

[13]  N. Thacker,et al.  Multiple shape recognition using pairwise geometric histogram based algorithms , 1995 .

[14]  Richard Szeliski,et al.  Recovering the Position and Orientation of Free-Form Objects from Image Contours Using 3D Distance Maps , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[16]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[17]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..

[18]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[19]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[20]  Neil A. Thacker,et al.  Optimal Pairwise Geometric Histograms , 1997, BMVC.

[21]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[23]  Jules Bloomenthal,et al.  Skeletal methods of shape manipulation , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[24]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[25]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[26]  Ron Kimmel,et al.  Computational Surface Flattening: A Voxel-Based Approach , 2001, IWVF.

[27]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[28]  Bernard Chazelle,et al.  Matching 3D models with shape distributions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[29]  Ron Kimmel,et al.  Computational Surface Flattening: A Voxel-Based Approach , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[31]  Alexander M. Bronstein,et al.  Expression-Invariant 3D Face Recognition , 2003, AVBPA.