Diverse lattice dynamics in ternary Cu-Sb-Se compounds
暂无分享,去创建一个
Lihua Wu | Jihui Yang | Wujie Qiu | Xuezhi Ke | Wenqing Zhang | Lihua Wu | Wujie Qiu | Jihui Yang | Wenqing Zhang | X. Ke
[1] A. Yamamoto,et al. High-performance thermoelectric mineral Cu12−xNixSb4S13 tetrahedrite , 2013 .
[2] Carl L. Julian,et al. Theory of Heat Conduction in Rare-Gas Crystals , 1965 .
[3] E. A. Payzant,et al. High-temperature order/disorder transition in the thermoelectric Cu_3SbSe_3 , 2011 .
[4] M. Kanatzidis,et al. High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K−Bi−Se Compounds. Synthesis and Properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues , 1997 .
[5] Jihui Yang,et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .
[6] George S. Nolas,et al. Inorganic clathrate-II materials of group 14: synthetic routes and physical properties , 2008 .
[7] P. Kent,et al. Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. , 2009, Physical review letters.
[8] Jingfeng Li,et al. Enhanced Thermoelectric Performance of Nonstoichiometric Compounds Cu3−xSbSe4 by Cu Deficiencies , 2014, Journal of Electronic Materials.
[9] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[10] G. A. Slack,et al. Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .
[11] Eugene E. Haller,et al. Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .
[12] M. Kanatzidis,et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.
[13] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[14] Wujie Qiu,et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy , 2014, Proceedings of the National Academy of Sciences.
[15] Miaofang Chi,et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.
[16] Tadeusz Paszkiewicz,et al. Physics of Phonons , 1987 .
[17] Xingyu Gao,et al. Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.
[18] M. Kanatzidis,et al. Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials , 2010 .
[19] CuSbSe2-assisted sintering of CuInSe2 at low temperature , 2012, Journal of Materials Science.
[20] Terry M. Tritt,et al. Recent trends in thermoelectric materials research , 2001 .
[21] David J. Singh,et al. Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.
[22] A. Srivastava,et al. Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity , 2014 .
[23] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[24] T. D. Senguttuvan,et al. Order–disorder transition and Fano-interference in thermoelectric Cu3SbSe3 nanoparticles , 2015 .
[25] D. Morelli,et al. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.
[26] J. Dai,et al. Solvothermal crystal growth of CuSbQ2 (Q=S, Se) and the correlation between macroscopic morphology and microscopic structure , 2009 .
[27] J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .
[28] B. Sales,et al. FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .
[29] F. A. Lindemann. The calculation of molecular Eigen-frequencies , 1984 .
[30] D. Morelli,et al. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.
[31] V. Ozoliņš,et al. Lone pair electrons minimize lattice thermal conductivity , 2013 .
[32] G. J. Snyder,et al. Copper ion liquid-like thermoelectrics. , 2012, Nature materials.
[33] Yoshiyuki Kawazoe,et al. First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .
[34] V. Ozoliņš,et al. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .
[35] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[36] P. Kent,et al. Anomalous lattice dynamics near the ferroelectric instability in PbTe. , 2011, Physical review letters.
[37] Donald T. Morelli,et al. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .
[38] R. K. Williams,et al. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.
[39] D. Rowe. CRC Handbook of Thermoelectrics , 1995 .
[40] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[41] D. Morelli,et al. Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors , 2010 .
[42] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.