Diverse lattice dynamics in ternary Cu-Sb-Se compounds

Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings.

[1]  A. Yamamoto,et al.  High-performance thermoelectric mineral Cu12−xNixSb4S13 tetrahedrite , 2013 .

[2]  Carl L. Julian,et al.  Theory of Heat Conduction in Rare-Gas Crystals , 1965 .

[3]  E. A. Payzant,et al.  High-temperature order/disorder transition in the thermoelectric Cu_3SbSe_3 , 2011 .

[4]  M. Kanatzidis,et al.  High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K−Bi−Se Compounds. Synthesis and Properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues , 1997 .

[5]  Jihui Yang,et al.  Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .

[6]  George S. Nolas,et al.  Inorganic clathrate-II materials of group 14: synthetic routes and physical properties , 2008 .

[7]  P. Kent,et al.  Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. , 2009, Physical review letters.

[8]  Jingfeng Li,et al.  Enhanced Thermoelectric Performance of Nonstoichiometric Compounds Cu3−xSbSe4 by Cu Deficiencies , 2014, Journal of Electronic Materials.

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[11]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[12]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  Wujie Qiu,et al.  Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy , 2014, Proceedings of the National Academy of Sciences.

[15]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[16]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[17]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[18]  M. Kanatzidis,et al.  Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials , 2010 .

[19]  CuSbSe2-assisted sintering of CuInSe2 at low temperature , 2012, Journal of Materials Science.

[20]  Terry M. Tritt,et al.  Recent trends in thermoelectric materials research , 2001 .

[21]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[22]  A. Srivastava,et al.  Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity , 2014 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  T. D. Senguttuvan,et al.  Order–disorder transition and Fano-interference in thermoelectric Cu3SbSe3 nanoparticles , 2015 .

[25]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[26]  J. Dai,et al.  Solvothermal crystal growth of CuSbQ2 (Q=S, Se) and the correlation between macroscopic morphology and microscopic structure , 2009 .

[27]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[28]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[29]  F. A. Lindemann The calculation of molecular Eigen-frequencies , 1984 .

[30]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[31]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[32]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[33]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[34]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  P. Kent,et al.  Anomalous lattice dynamics near the ferroelectric instability in PbTe. , 2011, Physical review letters.

[37]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[38]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[39]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  D. Morelli,et al.  Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors , 2010 .

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.