Image Thresholding Improved by Global Optimization Methods

ABSTRACT Image thresholding is a common segmentation technique with applications in various fields, such as computer vision, pattern recognition, microscopy, remote sensing, and biology. The selection of threshold values for segmenting pixels into foreground and background regions is usually based on subjective assumptions or user judgments under empirical rules or manually determined. This work describes and evaluates six effective threshold selection strategies for image segmentation based on global optimization methods: genetic algorithms, particle swarm, simulated annealing, and pattern search. Experiments are conducted on several images to demonstrate the effectiveness of the proposed methodology.

[1]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[2]  Yaobin Zou Image bilevel thresholding based on multiscale gradient multiplication , 2012, Digital Image Processing.

[3]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[4]  B. Kapralos,et al.  I An Introduction to Digital Image Processing , 2022 .

[5]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[6]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[7]  Rajesh Arora,et al.  Optimization: Algorithms and Applications , 2015 .

[8]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[10]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[11]  Swagatam Das,et al.  A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution , 2015, Pattern Recognit. Lett..

[12]  Franziska Frankfurter,et al.  Genetic Learning For Adaptive Image Segmentation , 2016 .

[13]  Chris A. Glasbey,et al.  An Analysis of Histogram-Based Thresholding Algorithms , 1993, CVGIP Graph. Model. Image Process..

[14]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[15]  Swarnajyoti Patra,et al.  PSO Based Context Sensitive Thresholding Technique for Automatic Image Segmentation , 2015 .

[16]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[17]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[18]  Azriel Rosenfeld,et al.  A Threshold Selection Technique , 1974, IEEE Transactions on Computers.

[19]  Mario Beauchemin,et al.  Image thresholding based on semivariance , 2013, Pattern Recognit. Lett..

[20]  N. Phansalkar,et al.  Adaptive local thresholding for detection of nuclei in diversity stained cytology images , 2011, 2011 International Conference on Communications and Signal Processing.

[21]  Patrick Siarry,et al.  Fast multilevel thresholding for image segmentation through a multiphase level set method , 2013, Signal Process..

[22]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[23]  A. Bovik,et al.  Image Quality Assessment , 2012 .

[24]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[25]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[26]  Qin Zhong,et al.  On minimum error thresholding and its implementations , 1988 .

[27]  Edgar N. Reyes,et al.  Optimization using simulated annealing , 1998, Northcon/98. Conference Proceedings (Cat. No.98CH36264).

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  Millie Pant,et al.  Multi-level image thresholding by synergetic differential evolution , 2014, Appl. Soft Comput..

[30]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[31]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[32]  Elsevier Sdol,et al.  Graphical Models and Image Processing , 2009 .

[33]  Qin Zhang,et al.  Image bilevel thresholding based on stable transition region set , 2013, Digit. Signal Process..

[34]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[35]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[36]  William Robson Schwartz,et al.  Textured Image Segmentation Based on Spatial Dependence using a Markov Random Field Model , 2006, 2006 International Conference on Image Processing.

[37]  Hongwei Chen,et al.  Image Segmentation Using Thresholding and Swarm Intelligence , 2012, J. Softw..

[38]  Rodrigo Minetto,et al.  Satellite Image Segmentation Using Wavelet Transforms Based on Color and Texture Features , 2008, ISVC.

[39]  Qin-Zhong Ye,et al.  On minimum error thresholding and its implementations , 1988, Pattern Recognit. Lett..