Impact of an environmental relevant concentration of 17α-ethinylestradiol on the cardiac function of bullfrog tadpoles.

[1]  M. J. Costa,et al.  Effects of the organophosphorus pesticide Folisuper 600 (methyl parathion) on the heart function of bullfrog tadpoles, Lithobates catesbeianus (Shaw, 1802). , 2015, Brazilian journal of biology = Revista brasleira de biologia.

[2]  C. Tyler,et al.  Do hormone‐modulating chemicals impact on reproduction and development of wild amphibians? , 2015, Biological reviews of the Cambridge Philosophical Society.

[3]  S. Praveena,et al.  Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. , 2014, Environment international.

[4]  F. Abdalla,et al.  Negative impact of a cadmium concentration considered environmentally safe in Brazil on the cardiac performance of bullfrog tadpoles. , 2014, Ecotoxicology and environmental safety.

[5]  Ying Sun,et al.  Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. , 2013, Environmental pollution.

[6]  J. Giesy,et al.  Effects of 17α-ethynylestradiol on sexual differentiation and development of the African clawed frog (Xenopus laevis). , 2012, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[7]  Thais R. N. Costa,et al.  Mudanças climáticas e seus impactos sobre os anfíbios brasileiros , 2012 .

[8]  Jing Li,et al.  Removal of estrogens in municipal wastewater treatment plants: a Chinese perspective. , 2012, Environmental pollution.

[9]  M. Otero,et al.  Processes for the elimination of estrogenic steroid hormones from water: a review. , 2012, Environmental pollution.

[10]  Yi Li,et al.  Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. , 2012, Journal of hazardous materials.

[11]  A. Kalinin,et al.  Copper sulfate affects Nile tilapia (Oreochromis niloticus) cardiomyocytes structure and contractile function , 2012, Ecotoxicology.

[12]  V. Yargeau,et al.  Degradation of 17α-ethinylestradiol by ozonation--identification of the by-products and assessment of their estrogenicity and toxicity. , 2012, Environment international.

[13]  J. Soares,et al.  Rapid-behaviour responses as a reliable indicator of estrogenic chemical toxicity in zebrafish juveniles. , 2011, Chemosphere.

[14]  P. Olsson,et al.  17α-Ethinyl estradiol affects anxiety and shoaling behavior in adult male zebra fish (Danio rerio). , 2011, Aquatic toxicology.

[15]  A. Kalinin,et al.  Microcystin-LR: How it affects the cardio-respiratory responses to hypoxia in Nile tilapia, Oreochromis niloticus. , 2011, Chemosphere.

[16]  D. Barceló,et al.  Removal of estrogens through water disinfection processes and formation of by-products. , 2011, Chemosphere.

[17]  J. Collins Amphibian decline and extinction: what we know and what we need to learn. , 2010, Diseases of aquatic organisms.

[18]  W. Jardim,et al.  Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography–tandem mass spectrometry , 2010 .

[19]  Wim De Coen,et al.  An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 alpha-ethinylestradiol in zebrafish (Danio rerio). , 2010, General and comparative endocrinology.

[20]  K. Lindström,et al.  Exposure to 17alpha-ethinyl estradiol impairs courtship and aggressive behaviour of male sand gobies (Pomatoschistus minutus). , 2010, Chemosphere.

[21]  S. Courtenay,et al.  Effects of 17alpha-ethynylestradiol on early-life development, sex differentiation and vitellogenin induction in mummichog (Fundulus heteroclitus). , 2010, Marine environmental research.

[22]  S. Klaine,et al.  Developmental effects of a municipal wastewater effluent on two generations of the fathead minnow, Pimephales promelas. , 2009, Aquatic toxicology.

[23]  J. Hellou,et al.  Biodegradation of endocrine disrupting compounds in harbour seawater and sediments. , 2009, The Science of the total environment.

[24]  R. Afonso,et al.  Occurrence of endocrine disrupting compounds in water sources of Belo Horizonte Metropolitan Area, Brazil , 2009, Environmental technology.

[25]  K. Lindström,et al.  Sand goby (Pomatoschistus minutus) males exposed to an endocrine disrupting chemical fail in nest and mate competition , 2009, Hormones and Behavior.

[26]  D. Wake,et al.  Are we in the midst of the sixth mass extinction? A view from the world of amphibians , 2008, Proceedings of the National Academy of Sciences.

[27]  M. Wade,et al.  Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): identifying critically vulnerable periods of development. , 2008, General and comparative endocrinology.

[28]  A. Kalinin,et al.  Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original® , 2008, Ecotoxicology.

[29]  Emily G. Notch,et al.  17alpha-Ethinylestradiol decreases expression of multiple hepatic nucleotide excision repair genes in zebrafish (Danio rerio). , 2007, Aquatic toxicology.

[30]  M. Ikonomou,et al.  The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. , 2007, The Science of the total environment.

[31]  T. Iguchi,et al.  Molecular cloning of two isoforms of Xenopus (Silurana) tropicalis estrogen receptor mRNA and their expression during development. , 2007, Biochimica et biophysica acta.

[32]  M. Herman,et al.  Morphometric studies of cardiac myocytes of rats chronically treated with an organophosphate. , 2007, Ecotoxicology and environmental safety.

[33]  A. Arukwe,et al.  Persistent sex-reversal and oviducal agenesis in adult Xenopus (Silurana) tropicalis frogs following larval exposure to the environmental pollutant ethynylestradiol. , 2006, Aquatic toxicology.

[34]  I. Falconer Are Endocrine Disrupting Compounds a Health Risk in Drinking Water? , 2006, International journal of environmental research and public health.

[35]  B. Young,et al.  Widespread amphibian extinctions from epidemic disease driven by global warming , 2006, Nature.

[36]  K. Kidd,et al.  Effects of the synthetic estrogen ethinylestradiol on early life stages of mink frogs and green frogs in the wild and in situ , 2005, Environmental toxicology and chemistry.

[37]  Geoffrey R. Smith,et al.  Direct and interactive effects of ecologically relevant concentrations of organic wastewater contaminants on Rana pipiens tadpoles , 2004, Environmental toxicology.

[38]  C. Tyler,et al.  Effects of 17alpha-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. , 2004, Ecotoxicology and environmental safety.

[39]  F. Kaymaz,et al.  Evaluation of the toxic effects of cypermethrin inhalation on the frog heart. , 2004, Ecotoxicology and environmental safety.

[40]  R. Relyea PREDATOR CUES AND PESTICIDES: A DOUBLE DOSE OF DANGER FOR AMPHIBIANS , 2003 .

[41]  Jun Ren,et al.  Impact of estrogen replacement on ventricular myocyte contractile function and protein kinase B/Akt activation. , 2003, American journal of physiology. Heart and circulatory physiology.

[42]  James P. Collins,et al.  Global amphibian declines: sorting the hypotheses , 2003 .

[43]  Pieter T. J. Johnson,et al.  The complexity of deformed amphibians , 2003 .

[44]  Richard J. Williams,et al.  The potential for estradiol and ethinylestradiol degradation in english rivers , 2002, Environmental toxicology and chemistry.

[45]  W. Sly,et al.  Flavonoid glucuronides are substrates for human liver β‐glucuronidase , 2001 .

[46]  B. Katzenellenbogen,et al.  Activation of estrogen receptor β is a prerequisite for estrogen‐dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes , 2001, FEBS letters.

[47]  P. Withers,et al.  Allometric and ecological relationships of ventricle and liver mass in anuran amphibians , 2001 .

[48]  D. Sedlak,et al.  Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme‐linked immunosorbent assay and gas chromatography/tandem mass spectrometry , 2001, Environmental toxicology and chemistry.

[49]  H. Gutzeit,et al.  17-α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes) , 2000 .

[50]  M. Pettersson,et al.  ETHINYLOESTRADIOL - AN UNDESIRED FISH CONTRACEPTIVE , 1999 .

[51]  J. Longcore,et al.  BATRACHOCHYTRIUM DENDROBATIDIS GEN. ET SP. NOV., A CHYTRID PATHOGENIC TO AMPHIBIANS , 1999 .

[52]  M. Servos,et al.  Behavior and occurrence of estrogens in municipal sewage treatment plants--I. Investigations in Germany, Canada and Brazil. , 1999, The Science of the total environment.

[53]  Farrell,et al.  Effects of temperature, adrenaline and ryanodine on power production in rainbow trout oncorhynchus mykiss ventricular trabeculae , 1998, The Journal of experimental biology.

[54]  Edwin J. Routledge,et al.  Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening , 1998 .

[55]  M Vornanen,et al.  L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. , 1998, The Journal of experimental biology.

[56]  R. Karas,et al.  Cardiac myocytes and fibroblasts contain functional estrogen receptors 1 , 1997, FEBS letters.

[57]  Susan C. Walls,et al.  UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Farrell,et al.  Cardiac physiology in tunas. II. Effect of ryanodine, calcium, and adrenaline on force–frequency relationships in atrial strips from skipjack tuna, Katsuwonus pelamis , 1992 .

[59]  M. Vornanen,et al.  Effect of Season and Temperature Acclimation on the Function of Crucian Carp (Carassius Carassius) Heart , 1992 .

[60]  D. Bers Ca regulation in cardiac muscle. , 1991, Medicine and science in sports and exercise.

[61]  G. Aherne,et al.  The relevance of the presence of certain synthetic steroids in the aquatic environment , 1989, The Journal of pharmacy and pharmacology.

[62]  M. Feder Responses to Acute Aquatic Hypoxia in Larvae of the Frog Rana Berlandieri , 1983 .

[63]  M. Feder,et al.  Temperature and the Balance between Aerial and Aquatic Respiration in Larvae of Rana berlandieri and Rana catesbeiana , 1983, Physiological Zoology.

[64]  K. Gosner,et al.  A simplified table for staging anuran embryos and larvae with notes on identification , 1960 .

[65]  F. Abdalla,et al.  THE IMPACT OF CADMIUM CHLORIDE ON THE GONADAL MORPHOLOGY OF THE NORTH AMERICAN BULLFROG TADPOLES, Lithobates catesbeianus (Shaw, 1802) , 2013 .

[66]  G. Callard,et al.  Cloning of three estrogen receptors (ER) from killifish (Fundulus heteroclitus): differences in populations from polluted and reference environments. , 2007, General and comparative endocrinology.

[67]  A. R. Boland,et al.  Acute modulation of Ca2+ influx on rat heart by 17β-estradiol , 2000 .

[68]  M. Feder,et al.  Cardio-respiratory synchrony in anuran larvae (Xenopus laevis, pachymedusa dacnicolor, and Rana berlandieri) , 1981 .

[69]  Robert H. Schmidt,et al.  Report of the AVMA panel on euthanasia. , 1978, Journal of the American Veterinary Medical Association.