Visual thinking in mathematics

Visual thinking — visual imagination or perception of diagrams and symbol arrays, and mental operations on them — is omnipresent in mathematics. Is this visual thinking merely a psychological aid, facilitating grasp of what is gathered by other means? Or does it also have epistemological functions, as a means of discovery, understanding, and even proof? This book argues that visual thinking in mathematics is rarely just a superfluous aid; it usually has epistemological value, often as a means of discovery. The book explores a major source of our grasp of mathematics, using examples from basic geometry, arithmetic, algebra, and real analysis. It shows how we can discern abstract general truths by means of specific images, how synthetic a priori knowledge is possible, and how visual means can help us grasp abstract structures. This book reopens the investigation of earlier thinkers from Plato to Kant into the nature and epistemology of an individual's basic mathematical beliefs and abilities, in the new light shed by the maturing cognitive sciences.

[1]  Andrew M. Gleason,et al.  Calculus (2nd ed.) , 1998 .

[2]  M. Zorzi,et al.  Storage and retrieval of addition facts: The role of number comparison , 2001, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[3]  Sarah T. Boysen,et al.  Counting in Chimpanzees: Nonhuman Principles and Emergent Properties of Number , 1993 .

[4]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[5]  W. Fias,et al.  Number sense in children with visuospatial disabilities: Orientation of the mental number line , 2005 .

[6]  Pierre Barrouillet,et al.  Predicting arithmetical achievement from neuro-psychological performance: a longitudinal study , 1998, Cognition.

[7]  Sang Ah Lee,et al.  Reorientation and Landmark-Guided Search by Young Children , 2006, Psychological science.

[8]  W Gerbino,et al.  Retinal vs. environmental orientation in the perception of the right angle. , 1995, Acta psychologica.

[9]  Jon Barwise,et al.  Diagrams and the concept of logical system , 1994 .

[10]  W. R. Garner The Processing of Information and Structure , 1974 .

[11]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[12]  M. Giaquinto,et al.  Visualizing in Arithmetic , 1993 .

[13]  S. Dehaene,et al.  Cross-linguistic regularities in the frequency of number words , 1992, Cognition.

[14]  Vicky G Bruce,et al.  Violations of Symmetry and Repetition in Visual Patterns , 1975 .

[15]  Marcus Giaquinto Visualizing as a Means of Geometrical Discovery , 1992 .

[16]  M. H. Fischer,et al.  Do Negative Numbers Have a Place on the Mental Number Line , 2005 .

[17]  R. Finke,et al.  Principles of mental imagery , 1989 .

[18]  C. Gallistel,et al.  Preverbal and verbal counting and computation , 1992, Cognition.

[19]  J. Barwise,et al.  Visual information and valid reasoning , 1991 .

[20]  Sang Ah Lee,et al.  Children's use of geometry for reorientation. , 2008, Developmental science.

[21]  Theodore Eisenberg,et al.  Functions and Associated Learning Difficulties , 2002 .

[22]  Stanislas Dehaene,et al.  The neural basis of the Weber–Fechner law: a logarithmic mental number line , 2003, Trends in Cognitive Sciences.

[23]  J. Baird,et al.  Psychophysical study of numbers , 1975 .

[24]  R. Dolan,et al.  Dissociation of Mechanisms Underlying Syllogistic Reasoning , 2000, NeuroImage.

[25]  R. Shepard,et al.  CHRONOMETRIC STUDIES OF THE ROTATION OF MENTAL IMAGES , 1973 .

[26]  Epistemology of the Obvious: A Geometrical Case , 1998 .

[27]  David Woodruff Smith,et al.  Husserl and Frege , 1982 .

[28]  M. Bornstein,et al.  The role of symmetry in infant form discrimination. , 1981, Child development.

[29]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[30]  John Mumma,et al.  Proofs, pictures, and Euclid , 2010, Synthese.

[31]  V. Bruce,et al.  Visual Perception: Physiology, Psychology and Ecology , 1985 .

[32]  John R. Hayes,et al.  ON THE FUNCTION OF VISUAL IMAGERY IN ELEMENTARY MATHEMATICS , 1973 .

[33]  Peter Bryant,et al.  Perception and Understanding in Young Children: An Experimental Approach , 1974 .

[34]  D. Klahr,et al.  Span and rate of apprehension in children and adults. , 1975, Journal of experimental child psychology.

[35]  Guershon Harel,et al.  The Role of Conceptual Entities and Their Symbols in Building Advanced Mathematical Concepts , 2002 .

[36]  Marcus Giaquinto,et al.  Epistemology of Visual Thinking in Elementary Real Analysis , 1994, The British Journal for the Philosophy of Science.

[37]  M. Giaquinto,et al.  Non-Analytic Conceptual Knowledge. , 1996 .

[38]  E. Bisiach,et al.  Unilateral Neglect of Representational Space , 1978, Cortex.

[39]  T. Apostol Mathematical Analysis , 1957 .

[40]  Deborah Hughes Hallet Visualization and calculus reform , 1991 .

[41]  C. Gallistel,et al.  The Child's Understanding of Number , 1979 .

[42]  Nathaniel Miller,et al.  Extended Abstract of Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry , 2006, Diagrams.

[43]  Daniel Reisberg,et al.  Can mental images be ambiguous , 1985 .

[44]  Peter Brugger,et al.  Stimulus-response compatibility in representational space , 1998, Neuropsychologia.

[45]  Katherine D. Kinzler,et al.  Core systems in human cognition. , 2007, Progress in brain research.

[46]  Penelope Maddy,et al.  Second Philosophy: A Naturalistic Method , 2007 .

[47]  S. Dehaene Varieties of numerical abilities , 1992, Cognition.

[48]  H S Terrace,et al.  Ordering of the numerosities 1 to 9 by monkeys. , 1998, Science.

[49]  M. Giaquinto The Search for Certainty: A Philosophical Account of Foundations of Mathematics , 2002 .

[50]  Koch Sigmund Ed,et al.  Psychology: A Study of A Science , 1962 .

[51]  N. Hari Narayanan,et al.  Diagrammatic Reasoning: Cognitive and Computational Perspectives , 1995 .

[52]  W P Banks,et al.  Two subjective scales of number , 1981, Perception & psychophysics.

[53]  G. R. Potts,et al.  Mental comparison of size and magnitude: size congruity effects. , 1984, Journal of experimental psychology. Learning, memory, and cognition.

[54]  T. Hall,et al.  Carl Friedrich Gauss. A Biography. , 1972 .

[55]  M. Farah Is visual imagery really visual? Overlooked evidence from neuropsychology. , 1988, Psychological review.

[56]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[57]  H. Carr Tractatus Logico-Philosophicus , 1923, Nature.

[58]  Stanislas Dehaene,et al.  Dissociable mechanisms of subitizing and counting: Neuropsychological evidence from simultanagnosic patients. , 1994 .

[59]  Z. Pylyshyn Seeing and Visualizing: It's Not What You Think , 2003 .

[60]  E Goldmeier,et al.  Similarity in visually perceived forms. , 1972, Psychological issues.

[61]  Fred Attneave,et al.  Perception and related areas. , 1962 .

[62]  F. Campbell,et al.  The Magic Number 4 ± 0: A New Look at Visual Numerosity Judgements , 1976, Perception.

[63]  Steven Pinker,et al.  Reinterpreting Visual Patterns in Mental Imagery , 1989, Cogn. Sci..

[64]  James Robert Brown,et al.  Proofs and Pictures , 1997, The British Journal for the Philosophy of Science.

[65]  Jon Driver,et al.  Parallel computation of symmetry but not repetition within single visual shapes , 1994 .

[66]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[67]  M. Black,et al.  Translations from the philosophical writings of Gottlob Frege , 1953 .

[68]  John C. Marshall,et al.  How Long is a Piece of String? A Study of Line Bisection in a Case of Visual Neglect , 1988, Cortex.

[69]  Diagrams: Socrates and Meno's slave , 1993 .

[70]  Richard B. Ivry,et al.  Activating response codes by stimuli in the neglected visual field. , 1995 .

[71]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[72]  C. Gallistel The organization of learning , 1990 .

[73]  Jean-Francois Mangin,et al.  Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number , 2004, NeuroImage.

[74]  S. Kosslyn,et al.  The case for mental imagery , 2006 .

[75]  Wim Fias,et al.  The mental representation of ordinal sequences is spatially organized , 2003, Cognition.