Closed Loop Control of a Wing's Lift for 'Gust' Suppression

The ability to maintain a constant lift force on a low aspect ratio semi circular wing using pulsed blowing active flow control is experimentally investigated. Dynamic models of the wing’s response to pressure (pulsed blowing) actuation and the response to longitudinal gusting are obtained through black%box system ident ification methods. Robust closed loop controllers are synthesized using a mixed sensitivity loop shaping approach. An additional feedforward disturbance compensation is designed based on a model of the unsteady aerodynamics. The controllers show good suppression of lift fluctuations at low frequencies, but as frequencies increase the control performance degrades due to fundamental physical limitations. The limitations are related to the leading edge vortex formation time.