Symmetry‐adapted perturbation theory of nonadditive three‐body interactions in van der Waals molecules. I. General theory

Symmetry‐adapted perturbation theory of pairwise nonadditive interactions in trimers is formulated, and pure three‐body polarization and exchange components are explicitly separated out. It is shown that the three‐body polarization contributions through the third order of perturbation theory naturally separate into terms describing the pure induction, mixed induction–dispersion, and pure dispersion interactions. Working equations for these components in terms of molecular integrals and linear and quadratic response functions are derived. These formulas have a clear, partly classical, partly quantum mechanical, physical interpretation. The asymptotic expressions for the second‐ and third‐order three‐body polarization contributions through the multipole moments and (hyper)polarizabilities of the isolated monomers are reported. Finally, assuming the random phase approximation for the response functions, explicit orbital formulas for the three‐body polarization terms are derived. The exchange terms are also c...

[1]  J. Hirschfelder Perturbation theory for exchange forces, II , 1967 .

[2]  A. Leś Third virial coefficient and nonadditivity of the first-order repulsive interactions of rare-gas atoms☆ , 1976 .

[3]  James B. Anderson,et al.  Quantum Monte Carlo calculations of three‐body corrections in the interaction of three helium atoms , 1990 .

[4]  O. Novaro,et al.  Nonadditive effects in small beryllium clusters , 1977 .

[5]  K. B. Whaley Structure and dynamics of quantum clusters , 1994 .

[6]  M. Szczęśniak,et al.  Ab initio calculations of nonadditive effects , 1992 .

[7]  K. Szalewicz,et al.  On the convergence properties of the Rayleigh–Schrödinger and the Hirschfelder–Silbey perturbation expansions for molecular interaction energies , 1977 .

[8]  asiński,et al.  On the nonadditivity of the second‐order exchange‐dispersion energy in the interaction of three helium atoms , 1987 .

[9]  E. Dalgaard Quadratic response functions within the time-dependent Hartree-Fock approximation , 1982 .

[10]  P. Wormer,et al.  Ab initio potential energy surface, infrared spectrum, and second virial coefficient of the He–CO complex , 1995 .

[11]  P. Wormer,et al.  Intermolecular potential and rovibrational levels of Ar-HF from symmetry-adapted perturbation theory , 1995 .

[12]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of potential-energy surfaces for weakly bound molecular complexes , 1994 .

[13]  P. Wormer,et al.  Quantum theoretical calculations of van der Waals interactions between molecules. Anisotropic long range interactions , 1977 .

[14]  S. Scheiner,et al.  Intermolecular potential of the methane dimer and trimer , 1990 .

[15]  B. Jeziorski,et al.  On the exchange polarization effects in the interaction of two helium atoms , 1976 .

[16]  D. Chartrand,et al.  Effect of three-body forces on the statics and dynamics of SF6-(Rg)n and (Rg)13 clusters , 1993 .

[17]  W. J. Meath,et al.  On the validity of the triple-dipole interaction as a representation of non-additive intermolecular forces , 1976 .

[18]  J. Maruani Molecules in Physics, Chemistry, and Biology , 1988 .

[19]  Josef Paldus,et al.  Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems , 1975 .

[20]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[21]  P. Wormer,et al.  Erratum: Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 [J. Chem. Phys. 79, 4973 (1983)] , 1984 .

[22]  N. Halberstadt,et al.  A theoretical study of the Ar2HCl van der Waals cluster , 1989 .

[23]  D. Nesbitt,et al.  Structural dependence of hydrogen fluoride vibrational red shifts in argon-hydrogen fluoride (ArnHF, n = 1-4), via high-resolution slit jet infrared spectroscopy , 1991 .

[24]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[25]  P. Wormer,et al.  Near‐infrared spectrum and rotational predissociation dynamics of the He–HF complex from an ab initio symmetry‐adapted perturbation theory potential , 1994 .

[26]  P. Jankowski,et al.  Symmetry‐adapted perturbation theory calculation of the intra‐atomic correlation contribution to the short‐range repulsion of helium atoms , 1990 .

[27]  M J Elrod,et al.  Many-body effects in intermolecular forces. , 1994, Chemical reviews.

[28]  M. Szczęśniak,et al.  Calculations of nonadditive effects by means of supermolecular Mo/ller–Plesset perturbation theory approach: Ar3 and Ar4 , 1990 .

[29]  B. Jeziorski,et al.  Variation-perturbation treatment of the hydrogen bond between water molecules , 1976 .

[30]  K. Schmidt,et al.  HF vibrational redshift for the icosahedral Ar12HF van der Waals cluster is the same as in an Ar matrix: Quantum five‐dimensional bound state calculations , 1994 .

[31]  P. Wormer,et al.  Ab initio studies of the interactions in Van der Waals molecules , 1980 .

[32]  R. Mcweeny,et al.  Time-dependent Hartree-Fock calculations of dispersion energy , 1985 .

[33]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[34]  Enrico Clementi,et al.  Methods and techniques in computational chemistry : METECC-95 , 1995 .

[35]  M. Bulski On the exchange repulsion between beryllium atoms , 1975 .

[36]  G. Chałasiński,et al.  Many-orbital cluster expansion for the exchange-repulsion nonadditivity in the interaction of rare gas atoms. The neon trimer , 1980 .

[37]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[38]  J. Hutson,et al.  Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers : calculations on Ar2-HCl , 1993 .

[39]  J. Paldus,et al.  Clifford algebra and unitary group formulations of the many-electron problem , 1988 .

[40]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[41]  H. Monkhorst,et al.  Contraction theorem for the algebraic reduction of (anti)commutators involving operator strings , 1981 .

[42]  Estela Blaisten-Barojas,et al.  Effect of three-body interactions on the early stages of atomic cluster growth , 1986 .

[43]  P. Piecuch MAPLE symbolic computation of the long‐range many‐body intermolecular potentials: Three‐body induction forces between two atoms and a linear molecule , 1993 .

[44]  P. Wormer,et al.  From Intermolecular Potentials to the Spectra of van der Waals Molecules, and Vice Versa , 1994 .

[45]  D. E. Stogryn Higher order interaction energies for systems of asymmetric molecules , 1971 .

[46]  D. Robinson,et al.  Mid‐ and Far‐Infrared Spectra of HF and DF in Rare‐Gas Matrices , 1971 .

[47]  Fizikos ir matematikos institutas,et al.  Mathematical apparatus of the theory of angular momentum , 1962 .

[48]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[49]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[50]  G. Diercksen,et al.  Symmetry‐adapted perturbation theory potential for the HeK+ molecular ion and transport coefficients of potassium ions in helium , 1994 .

[51]  C. E. Dykstra,et al.  Three-body analytical potential for interacting helium atoms , 1994 .

[52]  P. J. White,et al.  Structures of microclusters: An atomistic approach with three-body interactions , 1981 .

[53]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[54]  M. Tachikawa,et al.  Nonadditivity effects in the molecular interactions of H2O and HF trimers by the symmetry‐adapted perturbation theory , 1994 .

[55]  W. J. Meath,et al.  On the construction and use of reliable two-and many-body interatomic and intermolecular potentials , 1991 .

[56]  J. Hutson Vibrational dependence of the anisotropic intermolecular potential of Ar–HF , 1992 .

[57]  Ernesti,et al.  Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers: A theoretical study of Ar2-HF. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[58]  M. Jaszuński Coupled Hartree-Fock calculation of the induction energy , 1980 .

[59]  P. Fowler,et al.  The atom-surface interaction potential for He-NaCl: A model based on pairwise additivity , 1986 .

[60]  L. Piela,et al.  First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .

[61]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[62]  R. Saykally,et al.  An investigation of three‐body effects in intermolecular forces. III. Far infrared laser vibration–rotation–tunneling spectroscopy of the lowest internal rotor states of Ar2HCl , 1993 .

[63]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[64]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[65]  G. Diercksen,et al.  Methods in Computational Molecular Physics , 1983 .

[66]  R. A. Aziz,et al.  On the importance and problems in the construction of many-body potentials , 1984 .

[67]  P. Wormer,et al.  Rovibrational spectra of Ar-H2 and Ar-D2 Van der Waals complexes from an ab initio SAPT potential , 1994 .

[68]  J. Rychlewski,et al.  Convergence properties and large-order behavior of the polarization expansion for the interaction energy of hydrogen atoms , 1992 .

[69]  P. Wormer,et al.  The interaction potential and transport properties of Na+ ions in He gas , 1994 .

[70]  U. Buck Properties of neutral clusters from scattering experiments , 1988 .

[71]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[72]  K. Szalewicz,et al.  Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies , 1978 .

[73]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[74]  J. Hutson Vibrational dependence of the anisotropic intermolecular potential of Ar-HCl , 1992 .

[75]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[76]  D. Nesbitt,et al.  Intermolecular HF motion in ArnHF micromatrices (n=1,2,3,4): Classical and quantum calculations on a pairwise additive potential surface , 1992 .

[77]  R. A. Aziz,et al.  The argon and krypton interatomic potentials revisited , 1986 .

[78]  P. Piecuch Spherical tensor theory of long-range interactions in a system of N arbitrary molecules including quantum-mechanical many-body effects , 1986 .

[79]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[80]  A. van der Avoird,et al.  Ab initio potential energy surface and near‐infrared spectrum of the He–C2H2 complex , 1995 .

[81]  K. Szalewicz,et al.  On the convergence of the symmetrized Rayleigh-Schrödinger perturbation theory for molecular interaction energies , 1992 .

[82]  P. Piecuch,et al.  The nonadditive interactions in the Ar2HF and Ar2HCl clusters: An ab initio study , 1993 .