Reconstitution of a Minimal Ribosome-Associated Ubiquitination Pathway with Purified Factors

[1]  J. Weissman,et al.  Differential Scales of Protein Quality Control , 2014, Cell.

[2]  Rachel Green,et al.  Dom34 Rescues Ribosomes in 3′ Untranslated Regions , 2014, Cell.

[3]  R. Hegde,et al.  Listerin-Dependent Nascent Protein Ubiquitination Relies on Ribosome Subunit Dissociation , 2013, Molecular cell.

[4]  J. Frydman,et al.  Principles of cotranslational ubiquitination and quality control at the ribosome. , 2013, Molecular cell.

[5]  J. Huibregtse,et al.  A cotranslational ubiquitination pathway for quality control of misfolded proteins. , 2013, Molecular cell.

[6]  M. Fromont-Racine,et al.  Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products , 2013, Proceedings of the National Academy of Sciences.

[7]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[8]  R. Deshaies,et al.  Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome , 2013, eLife.

[9]  Dmitry Lyumkis,et al.  Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase , 2013, Proceedings of the National Academy of Sciences.

[10]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[11]  Adam Frost,et al.  A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress , 2012, Cell.

[12]  R. Hegde,et al.  Design principles of protein biosynthesis-coupled quality control. , 2012, Developmental cell.

[13]  R. Green,et al.  Translation drives mRNA quality control , 2012, Nature Structural &Molecular Biology.

[14]  T. Inada,et al.  Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. , 2012, Molecular cell.

[15]  Stephan Wickles,et al.  Structural basis of highly conserved ribosome recycling in eukaryotes and archaea , 2012, Nature.

[16]  R. Hegde,et al.  A Calmodulin-Dependent Translocation Pathway for Small Secretory Proteins , 2011, Cell.

[17]  R. Green,et al.  Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast , 2011, Proceedings of the National Academy of Sciences.

[18]  N. Ban,et al.  Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 , 2011, Science.

[19]  R. Hegde,et al.  Protein Targeting and Degradation are Coupled for Elimination of Mislocalized Proteins , 2011, Nature.

[20]  E. Villa,et al.  Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome , 2011, Nature Structural &Molecular Biology.

[21]  C. Hellen,et al.  Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes , 2011, The EMBO journal.

[22]  Kenji Kohno,et al.  Translational Pausing Ensures Membrane Targeting and Cytoplasmic Splicing of XBP1u mRNA , 2011, Science.

[23]  K. Shirahige,et al.  Receptor for activated C kinase 1 stimulates nascent polypeptide‐dependent translation arrest , 2010, EMBO reports.

[24]  R. Green,et al.  Dom34:Hbs1 Promotes Subunit Dissociation and Peptidyl-tRNA Drop-Off to Initiate No-Go Decay , 2010, Science.

[25]  C. Joazeiro,et al.  Role of a ribosome-associated E3 ubiquitin ligase in protein quality control , 2010, Nature.

[26]  R. Hegde,et al.  A Ribosome-Associating Factor Chaperones Tail-Anchored Membrane Proteins , 2010, Nature.

[27]  M. Topf,et al.  Mechanism of eIF6-mediated Inhibition of Ribosomal Subunit Joining* , 2010, The Journal of Biological Chemistry.

[28]  M. Hentze,et al.  The role of ABCE1 in eukaryotic posttermination ribosomal recycling. , 2010, Molecular cell.

[29]  R. Hegde,et al.  In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. , 2010, Methods in molecular biology.

[30]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[31]  M. Moore,et al.  A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. , 2009, Molecular cell.

[32]  T. Inada,et al.  Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome* , 2009, Journal of Biological Chemistry.

[33]  Brian V. Jenkins,et al.  A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration , 2009, Proceedings of the National Academy of Sciences.

[34]  A. Komar,et al.  A pause for thought along the co-translational folding pathway. , 2009, Trends in biochemical sciences.

[35]  A. Komar,et al.  Translation Initiation on Mammalian mRNAs with Structured 5′UTRs Requires DExH-Box Protein DHX29 , 2008, Cell.

[36]  C. Hellen,et al.  Recycling of Eukaryotic Posttermination Ribosomal Complexes , 2007, Cell.

[37]  R. Hegde,et al.  Identification of a Targeting Factor for Posttranslational Membrane Protein Insertion into the ER , 2007, Cell.

[38]  T. Inada,et al.  Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. , 2007, Genes & development.

[39]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[40]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[41]  R. Parker,et al.  Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation , 2006, Nature.

[42]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[43]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[44]  P. Walter,et al.  Block of HAC1 mRNA Translation by Long-Range Base Pairing Is Released by Cytoplasmic Splicing upon Induction of the Unfolded Protein Response , 2001, Cell.

[45]  A. Varshavsky,et al.  Detecting and measuring cotranslational protein degradation in vivo. , 2000, Science.

[46]  R. Kopito,et al.  Cotranslational Ubiquitination of Cystic Fibrosis Transmembrane Conductance Regulator in Vitro * , 1998, The Journal of Biological Chemistry.

[47]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[48]  U. Maitra,et al.  Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). , 1982, The Journal of biological chemistry.

[49]  G. Blobel,et al.  Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site- specific arrest of chain elongation that is released by microsomal membranes , 1981, The Journal of cell biology.