Social Network Analysis : A Survey of Research Applications in Computer Science

The emergence and popularization of online social networks suddenly made available a large amount of data from social organization, interaction and human behavior. All this information opens new perspectives and challenges to the study of social systems, being of interest to many fields. Although most online social networks are recent (less than fifteen years old), a vast amount of scientific papers was already published on this topic, dealing with a broad range of analytical methods and applications. This work describes how computational researches have approached this subject and the methods used to analyze such systems. Founded on a wide though non-exaustive review of the literature, a taxonomy is proposed to classify and describe different categories of research. Each research category is described and the main works, discoveries and perspectives are highlighted.

[1]  Yang Guo,et al.  Bayesian-Inference-Based Recommendation in Online Social Networks , 2011, IEEE Transactions on Parallel and Distributed Systems.

[2]  Susan C. Herring,et al.  Beyond Microblogging: Conversation and Collaboration via Twitter , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[3]  Jennifer Neville,et al.  Modeling relationship strength in online social networks , 2010, WWW '10.

[4]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[5]  Derek L. Hansen,et al.  A method for computing political preference among Twitter followers , 2014, Soc. Networks.

[6]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[7]  A. Pentland,et al.  Computational Social Science , 2009, Science.

[8]  Luis Mario Floría,et al.  Evolution of Cooperation in Multiplex Networks , 2012, Scientific Reports.

[9]  Shuai Gao,et al.  Popularity Prediction in Microblogging Network , 2014, APWeb.

[10]  Leysia Palen,et al.  Chatter on the red: what hazards threat reveals about the social life of microblogged information , 2010, CSCW '10.

[11]  Jacob Ratkiewicz,et al.  Detecting and Tracking Political Abuse in Social Media , 2011, ICWSM.

[12]  D. Watts Everything Is Obvious: *Once You Know the Answer , 2011 .

[13]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[14]  Warren Harrison,et al.  In This Issue , 2004, Software Quality Journal.

[15]  Hawoong Jeong,et al.  Comparison of online social relations in volume vs interaction: a case study of cyworld , 2008, IMC '08.

[16]  Gary D Bader,et al.  A travel guide to Cytoscape plugins , 2012, Nature Methods.

[17]  Alessandro Vespignani,et al.  Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number , 2011, PloS one.

[18]  Yizhou Sun,et al.  Mining Heterogeneous Information Networks: Principles and Methodologies , 2012, Mining Heterogeneous Information Networks: Principles and Methodologies.

[19]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[20]  David Zimbra,et al.  Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network , 2013, Expert Syst. Appl..

[21]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[22]  Marcel Salathé,et al.  The dynamics of health behavior sentiments on a large online social network , 2012, EPJ Data Science.

[23]  Gleb Gusev,et al.  Prediction of retweet cascade size over time , 2012, CIKM.

[24]  Jonathan D. Levin,et al.  Experimental Evidence , 2020, Vision and Perception.

[25]  Hao Tu,et al.  Sina Microblog: An Information-Driven Online Social Network , 2011, 2011 International Conference on Cyberworlds.

[26]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[27]  Christos Faloutsos,et al.  CatchSync: catching synchronized behavior in large directed graphs , 2014, KDD.

[28]  Cecilia Mascolo,et al.  Characterising temporal distance and reachability in mobile and online social networks , 2010, CCRV.

[29]  Natalie Dixon,et al.  You are what you tweet , 2013, INTR.

[30]  Fotis Psallidas,et al.  Effective Event Identification in Social Media , 2013, IEEE Data Eng. Bull..

[31]  Lilian Weng,et al.  Information diffusion on online social networks , 2014 .

[32]  Dragomir R. Radev,et al.  Rumor has it: Identifying Misinformation in Microblogs , 2011, EMNLP.

[33]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[34]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[35]  Esteban Moro,et al.  Social Features of Online Networks: The Strength of Intermediary Ties in Online Social Media , 2011, PloS one.

[36]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[37]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[38]  Dennis M. Wilkinson,et al.  Strong regularities in online peer production , 2008, EC '08.

[39]  Christos Faloutsos,et al.  Cascading Behavior in Large Blog Graphs , 2007 .

[40]  Robin I. M. Dunbar Neocortex size as a constraint on group size in primates , 1992 .

[41]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[42]  H. Van Dyke Parunak,et al.  Multi-Agent-Based Simulation XIV , 2013, Lecture Notes in Computer Science.

[43]  Chen Huang,et al.  Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake , 2011, CSCW.

[44]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[45]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Barry Wellman,et al.  Geography of Twitter networks , 2012, Soc. Networks.

[47]  Ravi Kumar,et al.  Dynamics of conversations , 2010, KDD.

[48]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[49]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[50]  Kristina Lerman,et al.  Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks , 2010, ICWSM.

[51]  Justin Cheng,et al.  Rumor Cascades , 2014, ICWSM.

[52]  Nello Cristianini,et al.  Nowcasting Events from the Social Web with Statistical Learning , 2012, TIST.

[53]  Bernardo A. Huberman,et al.  E-Mail as Spectroscopy: Automated Discovery of Community Structure within Organizations , 2005, Inf. Soc..

[54]  Nishanth R. Sastry,et al.  Sharing the Loves: Understanding the How and Why of Online Content Curation , 2013, ICWSM.

[55]  Antonio Scala,et al.  The economy of attention in the age of (mis)information , 2014, Journal of Trust Management.

[56]  Yamir Moreno,et al.  Broadcasters and Hidden Influentials in Online Protest Diffusion , 2012, ArXiv.

[57]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[58]  Sophia B. Liu The rise of curated crisis content , 2010, ISCRAM.

[59]  Sanjeev Kumar,et al.  Analyzing the Facebook workload , 2012, 2012 IEEE International Symposium on Workload Characterization (IISWC).

[60]  Padraig Cunningham,et al.  Network Analysis of Recurring YouTube Spam Campaigns , 2012, ICWSM.

[61]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[62]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[63]  Stefano Battiston,et al.  A model of a trust-based recommendation system on a social network , 2006, Autonomous Agents and Multi-Agent Systems.

[64]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[65]  Aron Culotta,et al.  Towards detecting influenza epidemics by analyzing Twitter messages , 2010, SOMA '10.

[66]  Michael S. Bernstein,et al.  Short and tweet: experiments on recommending content from information streams , 2010, CHI.

[67]  Paulo Shakarian,et al.  A scalable heuristic for viral marketing under the tipping model , 2013, Social Network Analysis and Mining.

[68]  Ofer Arazy,et al.  Improving Social Recommender Systems , 2009, IT Professional.

[69]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[70]  Christopher M. Danforth,et al.  Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter , 2011, PloS one.

[71]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[72]  Christos Faloutsos,et al.  Netprobe: a fast and scalable system for fraud detection in online auction networks , 2007, WWW '07.

[73]  Graham Neubig,et al.  Safety Information Mining — What can NLP do in a disaster— , 2011, IJCNLP.

[74]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[75]  M. McPherson,et al.  BIRDS OF A FEATHER: Homophily , 2001 .

[76]  Kwan-Liu Ma,et al.  Breaking news on twitter , 2012, CHI.

[77]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[78]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[79]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[80]  Ee-Peng Lim,et al.  Virality and Susceptibility in Information Diffusions , 2012, ICWSM.

[81]  Yamir Moreno,et al.  Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study , 2011, PloS one.

[82]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[83]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[84]  A. Vespignani,et al.  Competition among memes in a world with limited attention , 2012, Scientific Reports.

[85]  Reda Alhajj,et al.  From Sociology to Computing in Social Networks - Theory, Foundations and Applications , 2010, From Sociology to Computing in Social Networks.

[86]  Danah Boyd,et al.  Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[87]  Matjaz Perc,et al.  Inheritance patterns in citation networks reveal scientific memes , 2014, ArXiv.

[88]  Mario Cataldi,et al.  Emerging topic detection on Twitter based on temporal and social terms evaluation , 2010, MDMKDD '10.

[89]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[90]  Huan Liu,et al.  Social Spammer Detection in Microblogging , 2013, IJCAI.

[91]  Krishna P. Gummadi,et al.  Understanding and combating link farming in the twitter social network , 2012, WWW.

[92]  Tad Hogg,et al.  Stochastic Models of User-Contributory Web Sites , 2009, ICWSM.

[93]  Chenhao Tan,et al.  On the Interplay between Social and Topical Structure , 2011, ICWSM.

[94]  Nadeem Akhtar,et al.  Analysis of Facebook Social Network , 2013, 2013 5th International Conference on Computational Intelligence and Communication Networks.

[95]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[96]  Yamir Moreno,et al.  The Dynamics of Protest Recruitment through an Online Network , 2011, Scientific reports.

[97]  Brian D. Davison,et al.  Proceedings of the third ACM international conference on Web search and data mining , 2010, WSDM 2010.

[98]  Devavrat Shah,et al.  Rumors in a Network: Who's the Culprit? , 2009, IEEE Transactions on Information Theory.

[99]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[100]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[101]  Yamir Moreno,et al.  Cascading behaviour in complex socio-technical networks , 2013, J. Complex Networks.

[102]  Ryota Tomioka,et al.  Discovering Emerging Topics in Social Streams via Link-Anomaly Detection , 2014, IEEE Transactions on Knowledge and Data Engineering.

[103]  Bernardo A. Huberman,et al.  Email as spectroscopy: automated discovery of community structure within organizations , 2003 .

[104]  Jeffrey T. Hancock,et al.  Experimental evidence of massive-scale emotional contagion through social networks , 2014, Proceedings of the National Academy of Sciences.

[105]  Virgílio A. F. Almeida,et al.  Detecting Spammers and Content Promoters in Online Video Social Networks , 2009, IEEE INFOCOM Workshops 2009.

[106]  Hong Joo Lee,et al.  Use of social network information to enhance collaborative filtering performance , 2010, Expert Syst. Appl..

[107]  Duncan J. Watts,et al.  The Structural Virality of Online Diffusion , 2015, Manag. Sci..

[108]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[109]  Hila Becker,et al.  Beyond Trending Topics: Real-World Event Identification on Twitter , 2011, ICWSM.

[110]  Venkatesan Guruswami,et al.  CopyCatch: stopping group attacks by spotting lockstep behavior in social networks , 2013, WWW.

[111]  Christos Faloutsos,et al.  A General Suspiciousness Metric for Dense Blocks in Multimodal Data , 2015, 2015 IEEE International Conference on Data Mining.

[112]  Yamir Moreno,et al.  Locating privileged spreaders on an online social network. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  Jiawei Han,et al.  Evaluating Event Credibility on Twitter , 2012, SDM.

[114]  Gao Cong,et al.  On predicting the popularity of newly emerging hashtags in Twitter , 2013, J. Assoc. Inf. Sci. Technol..

[115]  Mung Chiang,et al.  Why watching movie tweets won't tell the whole story? , 2012, WOSN '12.

[116]  Stefan Stieglitz,et al.  Political Communication and Influence through Microblogging--An Empirical Analysis of Sentiment in Twitter Messages and Retweet Behavior , 2012, 2012 45th Hawaii International Conference on System Sciences.

[117]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[118]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[119]  Nello Cristianini,et al.  Effects of the recession on public mood in the UK , 2012, WWW.

[120]  Leysia Palen,et al.  "Beacons of hope" in decentralized coordination: learning from on-the-ground medical twitterers during the 2010 Haiti earthquake , 2012, CSCW.

[121]  Charles E. Gengler,et al.  Emotional Contagion Effects on Product Attitudes , 2001 .

[122]  Michael R. Lyu,et al.  Improving Recommender Systems by Incorporating Social Contextual Information , 2011, TOIS.

[123]  Matthew O Jackson,et al.  Using selection bias to explain the observed structure of Internet diffusions , 2010, Proceedings of the National Academy of Sciences.

[124]  M. Kochen,et al.  Contacts and influence , 1978 .

[125]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[126]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[127]  Virgílio A. F. Almeida,et al.  Characterizing user behavior in online social networks , 2009, IMC '09.

[128]  Gary Nichols,et al.  Processes, facies and architecture of fluvial distributary system deposits , 2007 .

[129]  Fan Yang,et al.  Automatic detection of rumor on Sina Weibo , 2012, MDS '12.

[130]  Leysia Palen,et al.  Microblogging during two natural hazards events: what twitter may contribute to situational awareness , 2010, CHI.

[131]  Michael S. Bernstein,et al.  Quantifying the invisible audience in social networks , 2013, CHI.

[132]  Norman M. Sadeh,et al.  The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City , 2012, ICWSM.

[133]  Qing Yang,et al.  Trend Analysis of News Topics on Twitter , 2012 .

[134]  Christian Staudt,et al.  NetworKit: An Interactive Tool Suite for High-Performance Network Analysis , 2014, ArXiv.

[135]  Christian Staudt,et al.  NetworKit: A tool suite for large-scale complex network analysis , 2014, Network Science.

[136]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[137]  Alex Pentland,et al.  Proceedings of the 5th Annual ACM Web Science Conference , 2013 .

[138]  Bernardo A. Huberman,et al.  What Trends in Chinese Social Media , 2011, ArXiv.

[139]  Rediet Abebe Can Cascades be Predicted? , 2014 .

[140]  Jennifer Golbeck,et al.  Benford’s Law Applies to Online Social Networks , 2015, PloS one.

[141]  Huan Liu,et al.  Exploiting social relations for sentiment analysis in microblogging , 2013, WSDM.

[142]  Daniel Gayo-Avello,et al.  A Meta-Analysis of State-of-the-Art Electoral Prediction From Twitter Data , 2012, ArXiv.

[143]  Bu-Sung Lee,et al.  Event Detection in Twitter , 2011, ICWSM.

[144]  Kazuyuki Aihara,et al.  Quantifying Collective Attention from Tweet Stream , 2013, PloS one.

[145]  Sue Burzynski Bullard Short and Tweet , 2013 .

[146]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[147]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[148]  Stuart A. Rice,et al.  The Identification of Blocs in Small Political Bodies , 1927, American Political Science Review.

[149]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[150]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[151]  Balachander Krishnamurthy,et al.  A few chirps about twitter , 2008, WOSN '08.

[152]  Leysia Palen,et al.  Pass it on?: Retweeting in mass emergency , 2010, ISCRAM.

[153]  Johan Bollen,et al.  Happiness Is Assortative in Online Social Networks , 2011, Artificial Life.

[154]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[155]  Tiago P. Peixoto,et al.  The graph-tool python library , 2014 .

[156]  Aron Culotta,et al.  Detecting influenza outbreaks by analyzing Twitter messages , 2010, ArXiv.

[157]  Miles Osborne,et al.  RT to Win! Predicting Message Propagation in Twitter , 2011, ICWSM.

[158]  P. Gloor,et al.  Predicting Stock Market Indicators Through Twitter “I hope it is not as bad as I fear” , 2011 .

[159]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[160]  Shirley Williams,et al.  What do people study when they study Twitter? Classifying Twitter related academic papers , 2013, J. Documentation.

[161]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[162]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[163]  Mathias Géry,et al.  A comparative study of social network analysis tools , 2010 .

[164]  Duncan J. Watts,et al.  Everything is obvious : how common sense fails , 2011 .

[165]  Daniel G. Goldstein,et al.  The structure of online diffusion networks , 2012, EC '12.

[166]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[167]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[168]  Lada A. Adamic,et al.  The Anatomy of Large Facebook Cascades , 2013, ICWSM.

[169]  Jeffrey Nichols,et al.  Who will retweet this?: Automatically Identifying and Engaging Strangers on Twitter to Spread Information , 2014, IUI.

[170]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[171]  Marco Guerini,et al.  Exploring Image Virality in Google Plus , 2013, 2013 International Conference on Social Computing.

[172]  Anirban Mahanti,et al.  Spatio-temporal and events based analysis of topic popularity in twitter , 2013, CIKM.

[173]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[174]  J. Nadal,et al.  Manifesto of computational social science , 2012 .

[175]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[176]  Ramanathan V. Guha,et al.  The predictive power of online chatter , 2005, KDD '05.

[177]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[178]  Yong Yu,et al.  A comparative study of users' microblogging behavior on sina weibo and twitter , 2012, UMAP.

[179]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[180]  Sameep Mehta,et al.  A study of rumor control strategies on social networks , 2010, CIKM.

[181]  Xueqi Cheng,et al.  Popularity prediction in microblogging network: a case study on sina weibo , 2013, WWW.

[182]  Lada A. Adamic,et al.  How to search a social network , 2005, Soc. Networks.

[183]  Eric Sun,et al.  Gesundheit! Modeling Contagion through Facebook News Feed , 2009, ICWSM.

[184]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[185]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[186]  Frank Webster,et al.  What Information Society? , 1994, Inf. Soc..