Endogenous fluorescence analysis: preliminary study revealing the potential of this non-invasive method to study mummified samples

[1]  H. Haenssle,et al.  Study protocol for a prospective, non-controlled, multicentre clinical study to evaluate the diagnostic accuracy of a stepwise two-photon excited melanin fluorescence in pigmented lesions suspicious for melanoma (FLIMMA study) , 2016, BMJ Open.

[2]  Karsten König,et al.  In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue , 2016, Journal of Neuro-Oncology.

[3]  Conlogue Gerald Considered Limitations and Possible Applications of Computed Tomography in Mummy Research , 2015, Anatomical record.

[4]  N. Lynnerup Bog Bodies , 2015, Anatomical record.

[5]  B. Fischer,et al.  Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat , 2015, Anatomical record.

[6]  F. Rühli Short Review: Magnetic Resonance Imaging of Ancient Mummies , 2015, Anatomical record.

[7]  F. Rühli,et al.  The Anatomy of the Mummy: Mortui Viventes Docent—When Ancient Mummies Speak to Modern Doctors , 2015, Anatomical record.

[8]  M Zanello,et al.  Spectral and lifetime domain measurements of rat brain tumors. , 2015, Biomedical optics express.

[9]  G. Bottiroli,et al.  Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis , 2014, European journal of histochemistry : EJH.

[10]  A. Bader,et al.  Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin , 2014, Journal of biophotonics.

[11]  C. Hervé,et al.  The embalmed heart of Richard the Lionheart (1199 A.D.): a biological and anthropological analysis , 2013, Scientific Reports.

[12]  D. Abi Haidar,et al.  Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy , 2012, Journal of biomedical optics.

[13]  Laura Marcu,et al.  Fluorescence Lifetime Techniques in Medical Applications , 2012, Annals of Biomedical Engineering.

[14]  N. Benecke,et al.  Estimating the chance of success of archaeometric analyses of bone: UV-induced bone fluorescence compared to histological screening , 2011 .

[15]  K. König,et al.  Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[16]  C. Oh,et al.  Auto‐fluorescence emitted from the cell residues preserved in human tissues of medieval Korean mummies , 2010, Journal of anatomy.

[17]  S. Achilefu,et al.  Fluorescence lifetime measurements and biological imaging. , 2010, Chemical reviews.

[18]  R. Stark,et al.  Nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman , 2010, Proceedings of the Royal Society B: Biological Sciences.

[19]  E. Willerslev,et al.  The 'relics of Joan of Arc': a forensic multidisciplinary analysis. , 2010, Forensic science international.

[20]  N. Lynnerup Methods in mummy research. , 2009, Anthropologischer Anzeiger; Bericht uber die biologisch-anthropologische Literatur.

[21]  Karsten König,et al.  Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis , 2009, Experimental dermatology.

[22]  M A A Neil,et al.  Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin , 2008, The British journal of dermatology.

[23]  H. Edwards,et al.  Raman spectroscopy of natron: shedding light on ancient Egyptian mummification , 2007, Analytical and bioanalytical chemistry.

[24]  K. Song,et al.  Preserved skin structure of a recently found fifteenth‐century mummy in Daejeon, Korea , 2006, Journal of anatomy.

[25]  P. So,et al.  Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. , 2005, Journal of biomedical optics.

[26]  J. Plicht,et al.  Dating bog bodies by means of C-14-AMS , 2004 .

[27]  Hans Christian Wulf,et al.  Autofluorescence spectrum of skin: component bands and body site variations , 2000, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[28]  Haishan Zeng,et al.  SPECTROSCOPIC AND MICROSCOPIC CHARACTERISTICS OF HUMAN SKIN AUTOFLUORESCENCE EMISSION , 1995, Photochemistry and photobiology.

[29]  H. Hino,et al.  Ultrastructure of skin and hair of an Egyptian mummy , 1982, Journal of cutaneous pathology.

[30]  D B Hrdy,et al.  Analysis of hair samples of mummies from Semma South (Sudanese Nubia). , 1978, American journal of physical anthropology.

[31]  E. Freire,et al.  Revista1Vol89ingles_Layout 1 , 2014 .

[32]  R. Evershed,et al.  Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. , 1999, The Analyst.