Veselago Materials: What is Possible and Impossible about the Dispersion of the Constitutive Parameters

Basic physical limitations on the material constitutive parameters of artificial passive materials with negative real parts of the effective parameters are reviewed. It is shown that field solutions in hypothetical materials with negative and nondispersive parameters are unstable. The energy density and field solutions in active metamaterials with nondispersive negative parameters are also considered

[1]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[2]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[3]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[4]  B. Kadomtsev,et al.  NEGATIVE ENERGY WAVES IN DISPERSIVE MEDIA , 1964 .

[5]  T. Itoh,et al.  Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line , 2004, IEEE Transactions on Antennas and Propagation.

[6]  V. Veselago,et al.  Электродинамика веществ с одновременно отрицательными значениями ε и μ , 1967 .

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  Sergei A. Tretyakov,et al.  Wire media with negative effective permittivity: A quasi‐static model , 2002 .

[9]  Didier Lippens,et al.  Experimental evidence of backward waves on terahertz left-handed transmission lines , 2005 .

[10]  K. Aydin,et al.  Focusing of electromagnetic waves by a left-handed metamaterial flat lens. , 2005, Optics express.

[11]  S. Tretyakov,et al.  Three-dimensional isotropic perfect lens based on LC-loaded transmission lines , 2005, physics/0509149.

[12]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[13]  A. Grbic,et al.  Subwavelength focusing using a negative-refractive-index transmission line lens , 2003, IEEE Antennas and Wireless Propagation Letters.

[14]  R. Ziolkowski,et al.  Superluminal transmission of information through an electromagnetic metamaterial. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  N. Engheta,et al.  A positive future for double-negative metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[16]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[17]  Rodney Loudon,et al.  CORRIGENDUM: The propagation of electromagnetic energy through an absorbing dielectric , 1970 .

[18]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[19]  R. Ruppin,et al.  Electromagnetic energy density in a dispersive and absorptive material , 2002 .

[20]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[21]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[22]  Sergei A. Tretyakov,et al.  Analytical antenna model for chiral scatterers: comparison with numerical and experimental data , 1996 .

[23]  S. Tretyakov,et al.  Modeling of patch antennas partially loaded with dispersive backward-wave materials , 2005, IEEE Antennas and Wireless Propagation Letters.

[24]  C. K. Ong,et al.  Amplification of evanescent waves in a lossy left-handed material slab , 2003 .

[25]  J. Askne,et al.  Energy of Electromagnetic Waves in the Presence of Absorption and Dispersion , 1970 .

[26]  Sergei A. Tretyakov,et al.  Dispersion and Reflection Properties of Artificial Media Formed By Regular Lattices of Ideally Conducting Wires , 2002 .

[27]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[28]  A. Alu,et al.  Physical insight into the "growing" evanescent fields of double-negative metamaterial lenses using their circuit equivalence , 2006, IEEE Transactions on Antennas and Propagation.

[29]  Weng Cho Chew,et al.  SOME REFLECTIONS ON DOUBLE NEGATIVE MATERIALS , 2005 .

[30]  M. Kostin,et al.  Theory of artificial magnetic substances based on ring currents , 1993 .

[31]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[32]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[33]  The influence of complex material coverings on the bandwidth of antenna , 2004, physics/0401144.

[34]  Sergei A. Tretyakov,et al.  Meta‐materials with wideband negative permittivity and permeability , 2001 .

[35]  S. Tretyakov,et al.  The influence of complex material coverings on the quality factor of simple radiating systems , 2005, IEEE Transactions on Antennas and Propagation.

[36]  Sergei Tretyakov Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss , 2004 .

[37]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[38]  A. Grbic,et al.  Experimental verification of backward-wave radiation from a negative refractive index metamaterial , 2002 .

[39]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.