SLiMSearch 2.0: biological context for short linear motifs in proteins

Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch 2.0 (Short, Linear Motif Search) web server allows researchers to identify occurrences of a user-defined SLiM in a proteome, using conservation and protein disorder context statistics to rank occurrences. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. For each motif occurrence, overlapping UniProt features and annotated SLiMs are displayed. Visualization also includes annotated multiple sequence alignments surrounding each occurrence, showing conservation and protein disorder statistics in addition to known and predicted SLiMs, protein domains and known post-translational modifications. In addition, enrichment of Gene Ontology terms and protein interaction partners are provided as indicators of possible motif function. All web server results are available for download. Users can search motifs against the human proteome or a subset thereof defined by Uniprot accession numbers or GO term. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch2.html.

[1]  Norman E. Davey,et al.  How viruses hijack cell regulation. , 2011, Trends in biochemical sciences.

[2]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[3]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[4]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[5]  Chenna Ramu,et al.  SIRW: a web server for the Simple Indexing and Retrieval System that combines sequence motif searches with keyword searches , 2003, Nucleic Acids Res..

[6]  Zsuzsanna Dosztányi,et al.  IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content , 2005, Bioinform..

[7]  Niall J. Haslam,et al.  Understanding eukaryotic linear motifs and their role in cell signaling and regulation. , 2008, Frontiers in bioscience : a journal and virtual library.

[8]  Amos Bairoch,et al.  ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins , 2006, Nucleic Acids Res..

[9]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[10]  Richard J. Edwards,et al.  CompariMotif: quick and easy comparisons of sequence motifs , 2008, Bioinform..

[11]  Jakub Pas,et al.  ELM: the status of the 2010 eukaryotic linear motif resource , 2009, Nucleic Acids Res..

[12]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[13]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[14]  Robert B. Russell,et al.  DILIMOT: discovery of linear motifs in proteins , 2006, Nucleic Acids Res..

[15]  Richard J. Edwards,et al.  SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent , 2006, Nucleic acids research.

[16]  Richard J. Edwards,et al.  Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery , 2009, Bioinform..

[17]  Olivier Elemento,et al.  Large-Scale Discovery and Characterization of Protein Regulatory Motifs in Eukaryotes , 2010, PloS one.

[18]  Nir Ben-Tal,et al.  QuasiMotiFinder: protein annotation by searching for evolutionarily conserved motif-like patterns , 2005, Nucleic Acids Res..

[19]  Daniel Rios,et al.  Ensembl 2011 , 2010, Nucleic Acids Res..

[20]  BMC Bioinformatics , 2005 .

[21]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[22]  Amos Bairoch,et al.  PROSITE, a protein domain database for functional characterization and annotation , 2009, Nucleic Acids Res..

[23]  Richard J. Edwards,et al.  SLiMSearch: A Webserver for Finding Novel Occurrences of Short Linear Motifs in Proteins, Incorporating Sequence Context , 2010, PRIB.

[24]  D. Higgins,et al.  Finding flexible patterns in unaligned protein sequences , 1995, Protein science : a publication of the Protein Society.

[25]  Rodrigo Lopez,et al.  A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences , 2008, BMC Bioinformatics.

[26]  Richard J. Edwards,et al.  SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs , 2010, Nucleic Acids Res..

[27]  Richard J. Edwards,et al.  SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins , 2007, PloS one.

[28]  David S. Goodsell,et al.  The RCSB Protein Data Bank: redesigned web site and web services , 2010, Nucleic Acids Res..

[29]  Sanguthevar Rajasekaran,et al.  Minimotif miner 2nd release: a database and web system for motif search , 2008, Nucleic Acids Res..

[30]  Allegra Via,et al.  A structure filter for the Eukaryotic Linear Motif Resource , 2009, BMC Bioinformatics.

[31]  References , 1971 .

[32]  Richard J. Edwards,et al.  The SLiMDisc server: short, linear motif discovery in proteins , 2007, Nucleic Acids Res..

[33]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[34]  István Simon,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm035 Structural bioinformatics Local structural disorder imparts plasticity on linear motifs , 2022 .