Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes

Hypersonic heating computations are still challenging due to difficulties in “(A) robust capturing of shockwaves” and “(B) accurate prediction of heating”. Based on our numerical survey for (A), we found that the dissipation inside the numerical shock wave structure (where no physical or mathematical explanation is valid) must be proportional to Mach number, in contrast to Mach independent dissipation provided by conventional AUSM fluxes. Then, we developed schemes that have those two properties above by combining (a) a proposed pressure flux (having Mach-proportional dissipation within numerical shock), and (b) a mass flux of an all-speed AUSM-family scheme (SLAU, AUSM+-up or LDFSS2001). The new schemes, called “SLAU2”, “AUSM+-up2”, and “LDFSS2001-2”, are applied to numerical tests, and their desired performances are demonstrated for a wide spectrum of Mach numbers, including hypersonic heating (for the latter two schemes), a low speed flow, and 3D aerodynamic applications.

[1]  R. Schwane,et al.  ON THE ACCURACY OF UPWIND SCHEMES FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS , 1987 .

[2]  Keiichi Kitamura,et al.  Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers , 2008, J. Comput. Phys..

[3]  F. R. Riddell,et al.  Theory of Stagnation Point Heat Transfer in Dissociated Air , 1958 .

[4]  Pingbing Ming,et al.  An Efficient Multigrid Method for Molecular Mechanics Modeling in Atomic Solids , 2011 .

[5]  Marcus V. C. Ramalho,et al.  A Possible Mechanism for the Appearance of the Carbuncle Phenomenon in Aerodynamic Simulations , 2010 .

[6]  Eiji Shima,et al.  Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions , 2012 .

[7]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[8]  S. Imlay,et al.  Blunt-body flow simulations , 1988 .

[9]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[10]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[11]  Meng-Sing Liou,et al.  Numerical speed of sound and its application to schemes for all speeds , 1999 .

[12]  Eiji Shima,et al.  Evaluation of Euler Fluxes for Hypersonic Heating Computations , 2010 .

[13]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[14]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[15]  Peter A. Gnoffo,et al.  Aerothermodynamic Analyses of Towed Ballutes , 2006 .

[16]  Eiji Shima,et al.  Multidimensional numerical noise from captured shock wave and its cure , 2013 .

[17]  James Menart,et al.  Grid Study on Blunt Bodies with the Carbuncle Phenomenon , 2007 .

[18]  Kun Xu,et al.  Dissipative mechanism in Godunov‐type schemes , 2001 .

[19]  Sylvie Benzoni-Gavage,et al.  Note on a paper by Robinet, Gressier, Casalis & Moschetta , 2002, Journal of Fluid Mechanics.

[20]  Meng-Sing Liou Open Problems in Numerical Fluxes: Proposed Resolutions , 2011 .

[21]  Elijah Kannatey-Asibu,et al.  Heat and Fluid Flow , 2008 .

[22]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[23]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[24]  Timothy J. Barth Some notes on shock resolving flux functions. Part 1: Stationary characteristics , 1989 .

[25]  Chongam Kim,et al.  Multi-dimensional limiting process for three-dimensional flow physics analyses , 2008, J. Comput. Phys..

[26]  Eiji Shima,et al.  Numerical and Experimental Investigations of Epsilon Launch Vehicle Aerodynamics at Mach 1.5 , 2013 .

[27]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[28]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[29]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[30]  Jean-Marc Moschetta,et al.  Shock wave numerical structure and the carbuncle phenomenon , 2005 .

[31]  C. Rumsey Apparent Transition Behavior of Widely-Used Turbulence Models , 2006 .

[32]  Meng-Sing Liou,et al.  Mass Flux Schemes and Connection to Shock Instability , 2000 .

[33]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[34]  Philip C. E. Jorgenson,et al.  Multi-dimensional dissipation for cure of pathological behaviors of upwind scheme , 2009, J. Comput. Phys..

[35]  M. Liou A Sequel to AUSM , 1996 .

[36]  Eiji Shima,et al.  Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds , 2011 .

[37]  Volker Elling,et al.  The carbuncle phenomenon is incurable , 2009 .

[38]  Philip L. Roe,et al.  Fluctuations and signals - a framework for numerical evolution problems. , 1800 .

[39]  Richard Sanders,et al.  Regular ArticleMultidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics☆ , 1998 .

[40]  Peter A. Gnoffo,et al.  Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids , 2009 .

[41]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[42]  A. Mazaheri,et al.  Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids , 2007 .

[43]  Keiichi Kitamura,et al.  An Evaluation of Euler Fluxes for Hypersonic Flow Computations , 2007 .

[44]  Meng-Sing Liou,et al.  How to solve compressible multifluid equations: a simple, robust and accurate method , 2007 .

[45]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[46]  Renato Paciorri,et al.  Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique , 2011, J. Comput. Phys..

[47]  Eiji Shima,et al.  Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds , 2011 .

[48]  Jack R. Edwards,et al.  Towards unified CFD simulations of real fluid flows , 2001 .

[49]  Kun Xu,et al.  Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations , 2011, J. Comput. Phys..

[50]  Richard Sanders,et al.  Multidimensional Dissipation for Upwind Schemes , 1998 .

[51]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[52]  Renato Paciorri,et al.  A shock-fitting technique for 2D unstructured grids , 2009 .

[53]  Eiji Shima,et al.  Validation of Arbitrary Unstructured CFD Code for Aerodynamic Analyses , 2011 .

[54]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[55]  Zhi J. Wang,et al.  A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes equations , 1998 .