Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution.

[1]  D. C. Malins,et al.  Biochemistry and Molecular Biology of Monooxygenases: Current Perspectives on Forms, Functions, and Regulation of Cytochrome P450 in Aquatic Species , 2018 .

[2]  Eric Engelbrecht,et al.  Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus Laevis: Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type , 2017, Toxicological sciences : an official journal of the Society of Toxicology.

[3]  L. Guillette,et al.  Molecular cloning and characterization of the aryl hydrocarbon receptors and aryl hydrocarbon receptor nuclear translocators in the American alligator. , 2016, General and comparative endocrinology.

[4]  Hongbing Wang,et al.  Mechanisms of xenobiotic receptor activation: Direct vs. indirect. , 2016, Biochimica et biophysica acta.

[5]  S. Petersen,et al.  Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus , 2016, Neuroscience.

[6]  C. Desplan,et al.  Molecular logic behind the three-way stochastic choices that expand butterfly colour vision , 2016, Nature.

[7]  C. Tohyama,et al.  AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse , 2016, Scientific Reports.

[8]  D. von Smolinski,et al.  Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor , 2016, Scientific Reports.

[9]  S. Mulero-Navarro,et al.  New Trends in Aryl Hydrocarbon Receptor Biology , 2016, Front. Cell Dev. Biol..

[10]  Bryan D. Thompson,et al.  Aryl hydrocarbon receptor deletion in cerebellar granule neuron precursors impairs neurogenesis , 2016, Developmental neurobiology.

[11]  Bronwen L. Aken,et al.  The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons , 2016, Nature Genetics.

[12]  Dalei Wu,et al.  Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity , 2016, Environmental health perspectives.

[13]  Nicholas H. Putnam,et al.  Hemichordate genomes and deuterostome origins , 2015, Nature.

[14]  M. Kakeyama,et al.  Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. , 2015, Neurotoxicology and teratology.

[15]  A. Just,et al.  Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight , 2015, Epigenetics.

[16]  William H. Bisson,et al.  Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles , 2015, Scientific Reports.

[17]  J. Smith,et al.  The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications , 2015, Genome research.

[18]  M. E. Hahn,et al.  Naturally occurring marine brominated indoles are aryl hydrocarbon receptor ligands/agonists. , 2015, Chemical research in toxicology.

[19]  C. Esser,et al.  The Aryl Hydrocarbon Receptor in Barrier Organ Physiology, Immunology, and Toxicology , 2015, Pharmacological Reviews.

[20]  Kathleen E. Houlahan,et al.  Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity , 2014, BMC Genomics.

[21]  R. Peterson,et al.  Intersection of AHR and Wnt Signaling in Development, Health, and Disease , 2014, International journal of molecular sciences.

[22]  H. Mollenkopf,et al.  AhR sensing of bacterial pigments regulates antibacterial defence , 2014, Nature.

[23]  S. Neuhauss,et al.  Whole-genome duplication in teleost fishes and its evolutionary consequences , 2014, Molecular Genetics and Genomics.

[24]  M. Geffard,et al.  Aryl hydrocarbon receptor control of a disease tolerance defence pathway , 2014, Nature.

[25]  Jr-Kai Yu,et al.  Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates , 2014, EvoDevo.

[26]  Fuki Gyoja A genome-wide survey of bHLH transcription factors in the Placozoan Trichoplax adhaerens reveals the ancient repertoire of this gene family in metazoan. , 2014, Gene.

[27]  J. Giesy,et al.  Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds. , 2014, Aquatic Toxicology.

[28]  C. Elferink,et al.  Ah Receptor–Mediated Suppression of Liver Regeneration through NC-XRE–Driven p21Cip1 Expression , 2014, Molecular Pharmacology.

[29]  B. Stockinger,et al.  The aryl hydrocarbon receptor: multitasking in the immune system. , 2014, Annual review of immunology.

[30]  M. Lakso,et al.  Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. , 2014, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[31]  T. Gasiewicz,et al.  The Ah receptor in stem cell cycling, regulation, and quiescence , 2014, Annals of the New York Academy of Sciences.

[32]  C. Desplan,et al.  Interchromosomal Communication Coordinates Intrinsically Stochastic Expression Between Alleles , 2014, Science.

[33]  M. E. Hahn,et al.  Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats , 2014, BMC Evolutionary Biology.

[34]  Brian J. Raney,et al.  Elephant shark genome provides unique insights into gnathostome evolution , 2014, Nature.

[35]  Eun-Young Kim,et al.  Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1β, in the chicken (Gallus gallus). , 2013, Toxicological sciences : an official journal of the Society of Toxicology.

[36]  M. Martindale,et al.  Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding , 2013, Development Genes and Evolution.

[37]  D. Richter,et al.  The genomic and cellular foundations of animal origins. , 2013, Annual review of genetics.

[38]  F. Quintana,et al.  Aryl Hydrocarbon Receptor Control of Adaptive Immunity , 2013, Pharmacological Reviews.

[39]  S. Brenner,et al.  Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum) , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert L. Tanguay,et al.  Comparative developmental toxicity of environmentally relevant oxygenated PAHs. , 2013, Toxicology and applied pharmacology.

[41]  A. De Luca,et al.  Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. , 2013, Immunity.

[42]  Matthew W. Brown,et al.  The Capsaspora genome reveals a complex unicellular prehistory of animals , 2013, Nature Communications.

[43]  P. Urwin,et al.  Adaptive and Specialised Transcriptional Responses to Xenobiotic Stress in Caenorhabditis elegans Are Regulated by Nuclear Hormone Receptors , 2013, PloS one.

[44]  Shohei Mitani,et al.  Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization , 2013, Neuron.

[45]  M. Harms,et al.  Evolutionary biochemistry: revealing the historical and physical causes of protein properties , 2013, Nature Reviews Genetics.

[46]  S. Monti,et al.  The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. , 2013, Blood.

[47]  D. Hall,et al.  Neuronal Target Identification Requires AHA-1-Mediated Fine-Tuning of Wnt Signaling in C. elegans , 2013, PLoS genetics.

[48]  Shivani U. Thanawala,et al.  Regional modulation of a stochastically expressed factor determines photoreceptor subtypes in the Drosophila retina. , 2013, Developmental cell.

[49]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[50]  Alexander S. Garruss,et al.  Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution , 2013, Nature Genetics.

[51]  B. Haas,et al.  Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta , 2013, Genome Biology.

[52]  J. Garcia-Fernández,et al.  Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. , 2013, Seminars in cell & developmental biology.

[53]  A. Pandini,et al.  Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. , 2013, Biochemistry.

[54]  M. O’Banion,et al.  Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory , 2013, Journal of neurochemistry.

[55]  G. Perdew,et al.  Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element‐independent manner , 2012, Hepatology.

[56]  Richard E. Peterson,et al.  Reproductive and developmental toxicity of dioxin in fish , 2012, Molecular and Cellular Endocrinology.

[57]  B. Lang,et al.  Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. , 2012, Molecular biology and evolution.

[58]  Katrina M. Waters,et al.  AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish , 2012, PloS one.

[59]  N. Scholz,et al.  Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. , 2011, Toxicology and applied pharmacology.

[60]  Bin Zhao,et al.  Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. , 2011, Toxicological sciences : an official journal of the Society of Toxicology.

[61]  Natalie A. Roberts,et al.  Exogenous Stimuli Maintain Intraepithelial Lymphocytes via Aryl Hydrocarbon Receptor Activation , 2011, Cell.

[62]  C. Tohyama,et al.  Molecular targets that link dioxin exposure to toxicity phenotypes , 2011, The Journal of Steroid Biochemistry and Molecular Biology.

[63]  R. T. Giulio,et al.  AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). , 2011 .

[64]  B Franz Lang,et al.  Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. , 2011, Molecular biology and evolution.

[65]  P. Hodson,et al.  AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. , 2011, Aquatic toxicology.

[66]  G. Kennedy,et al.  Aryl hydrocarbon receptor nuclear translocator in hepatocytes is required for aryl hydrocarbon receptor-mediated adaptive and toxic responses in liver. , 2010, Toxicological sciences : an official journal of the Society of Toxicology.

[67]  A. Tarrant,et al.  Light Entrained Rhythmic Gene Expression in the Sea Anemone Nematostella vectensis: The Evolution of the Animal Circadian Clock , 2010, PloS one.

[68]  Anthony E. Boitano,et al.  Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells , 2010, Science.

[69]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[70]  M. Harms,et al.  Analyzing protein structure and function using ancestral gene reconstruction. , 2010, Current opinion in structural biology.

[71]  H. Kikuchi,et al.  Characterization of the region of the aryl hydrocarbon receptor required for ligand dependency of transactivation using chimeric receptor between Drosophila and Mus musculus. , 2009, Biochimica et biophysica acta.

[72]  G. Perdew,et al.  Ah receptor represses acute phase response gene expression without binding to its cognate response element , 2009, Laboratory Investigation.

[73]  F. Matsumura,et al.  A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. , 2009, Biochemical pharmacology.

[74]  R. Peterson,et al.  AHR signaling in prostate growth, morphogenesis, and disease. , 2009, Biochemical pharmacology.

[75]  M. E. Hahn,et al.  Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. , 2009, Biochemical pharmacology.

[76]  Robert L. Tanguay,et al.  AHR-dependent misregulation of Wnt signaling disrupts tissue regeneration. , 2009, Biochemical pharmacology.

[77]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[78]  Garet P Lahvis,et al.  Abnormal Liver Development and Resistance to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Toxicity in Mice Carrying a Mutation in the DNA-Binding Domain of the Aryl Hydrocarbon Receptor , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[79]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[80]  Bryan D. Thompson,et al.  2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. , 2008, Toxicological Sciences.

[81]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[82]  Fred Hirsch,et al.  The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. , 2008, The Journal of clinical investigation.

[83]  Y. Fujii‐Kuriyama,et al.  Inducibility of cytochrome P450 1A1 and chemical carcinogenesis by benzo[a]pyrene in AhR repressor-deficient mice. , 2008, Biochemical and biophysical research communications.

[84]  J. Goldstone,et al.  Cytochrome P450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): origin and diversification of the CYP1 gene family. , 2007, Molecular biology and evolution.

[85]  Matthew J. Jenny,et al.  Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebra fish exposed to 3,3',4,4',5-pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[86]  K. Hayes,et al.  Hepatic transcriptional networks induced by exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. , 2007, Chemical research in toxicology.

[87]  Eun-Young Kim,et al.  Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[88]  C. Bradfield,et al.  The Aryl Hydrocarbon Receptor sans Xenobiotics: Endogenous Function in Genetic Model Systems , 2007, Molecular Pharmacology.

[89]  A. Okey An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[90]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[91]  Morgane Thomas-Chollier,et al.  Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics , 2007, BMC Evolutionary Biology.

[92]  T. Collier,et al.  Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. , 2006, Toxicology and applied pharmacology.

[93]  M. Scally,et al.  The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. , 2006, Developmental biology.

[94]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[95]  Michael D. Kim,et al.  The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. , 2006, Genes & development.

[96]  J. Brenman,et al.  Spineless provides a little backbone for dendritic morphogenesis. , 2006, Genes & development.

[97]  Hongtao Qin,et al.  The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. , 2006, Developmental biology.

[98]  M. E. Hahn,et al.  Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[99]  D. Wassenberg,et al.  The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[100]  K. Saigo,et al.  Temporal regulation of late expression of Bar homeobox genes during Drosophila leg development by Spineless, a homolog of the mammalian dioxin receptor. , 2006, Developmental biology.

[101]  Esteban O. Mazzoni,et al.  Stochastic spineless expression creates the retinal mosaic for colour vision , 2006, Nature.

[102]  P. Boutros,et al.  Aryl Hydrocarbon Receptor Regulates Distinct Dioxin-Dependent and Dioxin-Independent Gene Batteries , 2006, Molecular Pharmacology.

[103]  M. E. Hahn,et al.  AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. , 2005, The Biochemical journal.

[104]  Tatyana Klimova,et al.  Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[105]  M. Berenbaum,et al.  Regulation of an insect cytochrome P450 monooxygenase gene (CYP6B1) by aryl hydrocarbon and xanthotoxin response cascades. , 2005, Gene.

[106]  Alvaro Puga,et al.  Ah receptor signals cross-talk with multiple developmental pathways. , 2005, Biochemical pharmacology.

[107]  D. Lenoir,et al.  Biological Activity and Physicochemical Parameters of Marine Halogenated Natural Products 2,3,3′,4,4′,5,5′-Heptachloro-1′-Methyl-1,2′-Bipyrrole and2,4,6-Tribromoanisole , 2004, Archives of environmental contamination and toxicology.

[108]  John Postlethwait,et al.  Subfunction partitioning, the teleost radiation and the annotation of the human genome. , 2004, Trends in genetics : TIG.

[109]  T. Ogata,et al.  Association of male infertility with Pro185Ala polymorphism in the aryl hydrocarbon receptor repressor gene: implication for the susceptibility to dioxins. , 2004, Fertility and sterility.

[110]  Hongtao Qin,et al.  The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. , 2004, Developmental biology.

[111]  Yishi Jin,et al.  The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans , 2004, Development.

[112]  Richard E Peterson,et al.  Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[113]  S. Tittlemier,et al.  Naturally produced halogenated dimethyl bipyrroles bind to the aryl hydrocarbon receptor and induce cytochrome P4501A and porphyrin accumulation in chicken embryo hepatocytes , 2003, Environmental toxicology and chemistry.

[114]  S. Tittlemier,et al.  Reproductive and morphological effects of halogenated dimethyl bipyrroles on captive American kestrels (Falco sparverius) , 2003, Environmental toxicology and chemistry.

[115]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[116]  M. E. Hahn,et al.  Aryl hydrocarbon receptors: diversity and evolution. , 2002, Chemico-biological interactions.

[117]  Robert L. Tanguay,et al.  The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. , 2002, Molecular pharmacology.

[118]  P. Dong,et al.  Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. , 2002, Development.

[119]  C. Carpenter,et al.  Evidence that GABAergic neurons in the preoptic area of the rat brain are targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin during development. , 2002, Environmental health perspectives.

[120]  M. E. Hahn,et al.  Regulatory Interactions among Three Members of the Vertebrate Aryl Hydrocarbon Receptor Family: AHR Repressor, AHR1, and AHR2* , 2002, The Journal of Biological Chemistry.

[121]  R. A. Butler,et al.  An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and β-naphthoflavone binding , 2001 .

[122]  L. Lubbers,et al.  Distribution of mRNAs encoding the arylhydrocarbon receptor, arylhydrocarbon receptor nuclear translocator, and arylhydrocarbon receptor nuclear translocator‐2 in the rat brain and brainstem , 2000, The Journal of comparative neurology.

[123]  M. E. Hahn,et al.  Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. , 1999, The Journal of biological chemistry.

[124]  M. Ward,et al.  The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. , 1999, Development.

[125]  M. E. Hahn The aryl hydrocarbon receptor: a comparative perspective. , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[126]  D. Tillitt,et al.  Aryl hydrocarbon receptor function in early vertebrates: inducibility of cytochrome P450 1A in agnathan and elasmobranch fish. , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[127]  I. Duncan,et al.  Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. , 1998, Genes & development.

[128]  W B Wood,et al.  Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[129]  M. E. Hahn,et al.  Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[130]  M. E. Hahn,et al.  Photoaffinity labeling of the Ah receptor: phylogenetic survey of diverse vertebrate and invertebrate species. , 1994, Archives of biochemistry and biophysics.

[131]  C. Bradfield,et al.  Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[132]  O. Gotoh,et al.  cDNA cloning and structure of mouse putative Ah receptor. , 1992, Biochemical and biophysical research communications.

[133]  A. Poland,et al.  2,3,7,8-Tetrachlorodibenzo-p-dioxin: environmental contaminant and molecular probe. , 1976, Federation proceedings.

[134]  E. Glover,et al.  Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. , 1976, The Journal of biological chemistry.

[135]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[136]  K. Bock From dioxin toxicity to putative physiologic functions of the human Ah receptor in homeostasis of stem/progenitor cells , 2017, Biochemical pharmacology.

[137]  Eun-Young Kim,et al.  Dioxin activation of CYP1A5 promoter/enhancer regions from two avian species, common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus): association with aryl hydrocarbon receptor 1 and 2 isoforms. , 2009, Toxicology and applied pharmacology.

[138]  Christopher A Bradfield,et al.  The search for endogenous activators of the aryl hydrocarbon receptor. , 2008, Chemical research in toxicology.

[139]  W. Heideman,et al.  Understanding dioxin developmental toxicity using the zebrafish model. , 2006, Birth defects research. Part A, Clinical and molecular teratology.

[140]  Y. Fujii‐Kuriyama,et al.  Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. , 1999, Genes & development.

[141]  O. Hankinson The aryl hydrocarbon receptor complex. , 1995, Annual review of pharmacology and toxicology.

[142]  G L Kimmel,et al.  Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. , 1993, Critical reviews in toxicology.

[143]  J. Whitlock,et al.  Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. , 1990, Annual review of pharmacology and toxicology.

[144]  M. Denison,et al.  Comparative studies of aryl hydrocarbon hydroxylase and the Ah receptor in nonmammalian species. , 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[145]  A Poland,et al.  2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. , 1982, Annual review of pharmacology and toxicology.

[146]  H. R. Crollius,et al.  Bioinformatics Applications Note Genome Analysis Genomicus: a Database and a Browser to Study Gene Synteny in Modern and Ancestral Genomes , 2022 .