Optical communication beyond orbital angular momentum

Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

[1]  Daniel A. Nolan,et al.  Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre , 2015, Scientific Reports.

[2]  Guifang Li,et al.  Space-division multiplexing: the next frontier in optical communication , 2014 .

[3]  Joseph M. Kahn,et al.  Capacity limits of spatially multiplexed free-space communication , 2015 .

[4]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[5]  Guifang Li,et al.  Focus issue: space multiplexed optical transmission. , 2011, Optics express.

[6]  Andrew Forbes,et al.  White light wavefront control with a spatial light modulator. , 2014, Optics express.

[7]  Kishan Dholakia,et al.  Is there an optimal basis to maximise optical information transfer? , 2016, Scientific Reports.

[8]  A. Willner,et al.  Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link , 2015 .

[9]  Yinwen Cao,et al.  Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. , 2015, Optics letters.

[10]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[11]  William Shieh,et al.  N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes , 2014, 2014 The European Conference on Optical Communication (ECOC).

[12]  S Berdagué,et al.  Mode division multiplexing in optical fibers. , 1982, Applied optics.

[13]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[14]  A. Forbes,et al.  All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers , 2013, Journal of Lightwave Technology.

[15]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[16]  B Zhu,et al.  Spectrally Efficient Long-Haul WDM Transmission Using 224-Gb/s Polarization-Multiplexed 16-QAM , 2011, Journal of Lightwave Technology.

[17]  Jens Kobelke,et al.  Data transmission with twisted light through a free-space to fiber optical communication link , 2016 .

[18]  Ting Wang,et al.  64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing , 2011, Journal of Lightwave Technology.

[19]  Masato Mizoguchi,et al.  Ultra-High Capacity WDM Transmission Using Spectrally-Efficient PDM 16-QAM Modulation and C- and Extended L-Band Wideband Optical Amplification , 2011, Journal of Lightwave Technology.

[20]  Naoya Matsumoto,et al.  Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. , 2009, Optics letters.

[21]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  A. Forbes Laser Beam Propagation : Generation and Propagation of Customized Light , 2014 .

[23]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[24]  David J Richardson,et al.  Filling the Light Pipe , 2010, Science.

[25]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[26]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .