Continuous Traveling Waves for Prey-Taxis
暂无分享,去创建一个
[1] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[2] Chris Cosner,et al. Models for Predator-Prey Systems at Multiple Scales , 1996, SIAM Rev..
[3] G. Odell,et al. Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.
[4] Steven R. Dunbar,et al. Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in ⁴ , 1984 .
[5] Alan A. Berryman,et al. Credible, Parsimonious and Useful Predator‐Prey Models: A Reply to Abrams, Gleeson, and Sarnelle , 1995 .
[6] Steven R. Dunbar,et al. Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .
[7] Jianhua Huang,et al. Existence of traveling wave solutions in a diffusive predator-prey model , 2003, Journal of mathematical biology.
[8] Yang Kuang,et al. Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .
[9] Christian Jost,et al. About deterministic extinction in ratio-dependent predator-prey models , 1999 .
[10] Steven R. Dunbar,et al. Travelling wave solutions of diffusive Lotka-Volterra equations , 1983 .
[11] Peter J. Wangersky,et al. Lotka-Volterra Population Models , 1978 .
[12] A. Dixon,et al. Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control , 2000 .
[13] 明 大久保,et al. Diffusion and ecological problems : mathematical models , 1980 .
[14] R. Gardner,et al. Existence of Travelling Wave Solutions of Predator–Prey Systems via the Connection Index , 1984 .
[15] Lee A. Segel,et al. Mathematical models in molecular and cellular biology , 1982, The Mathematical Gazette.
[16] P. Auger,et al. A predator-prey model with predators using hawk and dove tactics. , 2002, Mathematical biosciences.
[17] Donald L. DeAngelis,et al. A Model for Tropic Interaction , 1975 .
[18] P. Kareiva,et al. Allee Dynamics and the Spread of Invading Organisms , 1993 .
[19] Karl P. Schmidt,et al. Principles of Animal Ecology , 1950 .
[20] P. Hartman. Ordinary Differential Equations , 1965 .
[21] Michael J. Crawley,et al. Natural Enemies: The Population Biology of Predators, Parasites and Diseases , 1992 .
[22] Peter Turchin,et al. Complex Population Dynamics , 2003 .
[23] M A Lewis,et al. How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.
[24] Wayne M. Getz,et al. A UNIFIED APPROACH TO MULTISPECIES MODELING , 1991 .
[25] J. Murray,et al. Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.
[26] V. Nanjundiah,et al. Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.
[27] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[28] A. Hastings,et al. Unexpected spatial patterns in an insect outbreak match a predator diffusion model , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[29] N. Shigesada,et al. Biological Invasions: Theory and Practice , 1997 .
[30] F. A. Pitelka,et al. PRINCIPLES OF ANIMAL ECOLOGY , 1951 .
[31] L. Ginzburg,et al. The nature of predation: prey dependent, ratio dependent or neither? , 2000, Trends in ecology & evolution.