Continuous Traveling Waves for Prey-Taxis

Abstract Spatially moving predators are often considered for biological control of invasive species. The question arises as to whether introduced predators are able to stop an advancing pest or foreign population. In recent studies of reaction–diffusion models, it has been shown that the prey invasion can only be stopped if the prey dynamics observes an Allee effect. In this paper, we include prey-taxis into the model. Prey-taxis describe the active movement of predators to regions of high prey density. This effect leads to the observation that predators are drawn away from the leading edge of a prey invasion where its density is low. This leads to counterintuitive result that prey-taxis can actually reduce the likelihood of effective biocontrol.

[1]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[2]  Chris Cosner,et al.  Models for Predator-Prey Systems at Multiple Scales , 1996, SIAM Rev..

[3]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[4]  Steven R. Dunbar,et al.  Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in ⁴ , 1984 .

[5]  Alan A. Berryman,et al.  Credible, Parsimonious and Useful Predator‐Prey Models: A Reply to Abrams, Gleeson, and Sarnelle , 1995 .

[6]  Steven R. Dunbar,et al.  Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .

[7]  Jianhua Huang,et al.  Existence of traveling wave solutions in a diffusive predator-prey model , 2003, Journal of mathematical biology.

[8]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[9]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[10]  Steven R. Dunbar,et al.  Travelling wave solutions of diffusive Lotka-Volterra equations , 1983 .

[11]  Peter J. Wangersky,et al.  Lotka-Volterra Population Models , 1978 .

[12]  A. Dixon,et al.  Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control , 2000 .

[13]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[14]  R. Gardner,et al.  Existence of Travelling Wave Solutions of Predator–Prey Systems via the Connection Index , 1984 .

[15]  Lee A. Segel,et al.  Mathematical models in molecular and cellular biology , 1982, The Mathematical Gazette.

[16]  P. Auger,et al.  A predator-prey model with predators using hawk and dove tactics. , 2002, Mathematical biosciences.

[17]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[18]  P. Kareiva,et al.  Allee Dynamics and the Spread of Invading Organisms , 1993 .

[19]  Karl P. Schmidt,et al.  Principles of Animal Ecology , 1950 .

[20]  P. Hartman Ordinary Differential Equations , 1965 .

[21]  Michael J. Crawley,et al.  Natural Enemies: The Population Biology of Predators, Parasites and Diseases , 1992 .

[22]  Peter Turchin,et al.  Complex Population Dynamics , 2003 .

[23]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.

[24]  Wayne M. Getz,et al.  A UNIFIED APPROACH TO MULTISPECIES MODELING , 1991 .

[25]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[26]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[27]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[28]  A. Hastings,et al.  Unexpected spatial patterns in an insect outbreak match a predator diffusion model , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[30]  F. A. Pitelka,et al.  PRINCIPLES OF ANIMAL ECOLOGY , 1951 .

[31]  L. Ginzburg,et al.  The nature of predation: prey dependent, ratio dependent or neither? , 2000, Trends in ecology & evolution.