FlexGP

[1]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[2]  Terence Soule,et al.  Behavioral Diversity and a Probabilistically Optimal GP Ensemble , 2004, Genetic Programming and Evolvable Machines.

[3]  Kalyan Veeramachaneni,et al.  Learning regression ensembles with genetic programming at scale , 2013, GECCO '13.

[4]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jimmy J. Lin,et al.  Scaling Populations of a Genetic Algorithm for Job Shop Scheduling Problems Using MapReduce , 2010, 2010 IEEE Second International Conference on Cloud Computing Technology and Science.

[6]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[7]  Juan Julián Merelo Guervós,et al.  EvAg: a scalable peer-to-peer evolutionary algorithm , 2010, Genetic Programming and Evolvable Machines.

[8]  H. Iba Bagging, Boosting, and bloating in Genetic Programming , 1999 .

[9]  Ke Wang,et al.  Parallel learning to rank for information retrieval , 2011, SIGIR.

[10]  Leonardo Vanneschi,et al.  An Empirical Study of Multipopulation Genetic Programming , 2003, Genetic Programming and Evolvable Machines.

[11]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[12]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[13]  Juan Julián Merelo Guervós,et al.  A Peer-to-Peer Approach to Genetic Programming , 2011, EuroGP.

[14]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[17]  Maarten Keijzer,et al.  Improving Symbolic Regression with Interval Arithmetic and Linear Scaling , 2003, EuroGP.

[18]  Giandomenico Spezzano,et al.  A Jxta Based Asynchronous Peer-to-Peer Implementation of Genetic Programming , 2006, J. Softw..

[19]  Krzysztof Krawiec,et al.  Multiple regression genetic programming , 2014, GECCO.

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  Xavier Llorà,et al.  Scaling eCGA model building via data-intensive computing , 2010, IEEE Congress on Evolutionary Computation.

[22]  William B. Langdon,et al.  Combining Decision Trees and Neural Networks for Drug Discovery , 2002, EuroGP.

[23]  Pier Luca Lanzi,et al.  XCS with stack-based genetic programming , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[24]  Giandomenico Spezzano,et al.  Mining Distributed Evolving Data Streams Using Fractal GP Ensembles , 2007, EuroGP.

[25]  Kalyan Veeramachaneni,et al.  Flex-GP: Genetic Programming on the Cloud , 2012, EvoApplications.

[26]  Una-May O'Reilly,et al.  A Library to Run Evolutionary Algorithms in the Cloud Using MapReduce , 2012, EvoApplications.

[27]  Lars Niklasson,et al.  Genetically Evolved Trees Representing Ensembles , 2006, ICAISC.

[28]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[29]  John Langford,et al.  Sparse Online Learning via Truncated Gradient , 2008, NIPS.

[30]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[31]  Xavier Llorà,et al.  Scaling Genetic Algorithms Using MapReduce , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[32]  Mark Johnston,et al.  Evolving Diverse Ensembles Using Genetic Programming for Classification With Unbalanced Data , 2013, IEEE Transactions on Evolutionary Computation.

[33]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[34]  Owen C. Derby FlexGP: a Scalable System for Factored Learning in the Cloud , 2013 .

[35]  Dylan Sherry FlexGP 2.0 : multiple levels of parallelism in distributed machine learning via genetic programming , 2013 .

[36]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[37]  E. Vladislavleva Model-based problem solving through symbolic regression via pareto genetic programming , 2008 .

[38]  Márk Jelasity,et al.  T-Man: Gossip-based fast overlay topology construction , 2009, Comput. Networks.

[39]  Leonardo Vanneschi,et al.  Operator equalisation for bloat free genetic programming and a survey of bloat control methods , 2011, Genetic Programming and Evolvable Machines.

[40]  Mark Kotanchek,et al.  Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models , 2008 .

[41]  Kalyan Veeramachaneni,et al.  Evolutionary optimization of flavors , 2010, GECCO '10.

[42]  Anne-Marie Kermarrec,et al.  Gossiping in distributed systems , 2007, OPSR.

[43]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[44]  Yuhong Yang Adaptive Regression by Mixing , 2001 .

[45]  Andy J. Keane,et al.  A Data Parallel Approach for Large-Scale Gaussian Process Modeling , 2002, SDM.