Using Indifference Information in Robust Ordinal Regression

In this paper, we propose an extension to Robust Ordinal Regression allowing it to take into account also preference information from questions about indifference between real and fictitious alternatives. In particular, we allow the decision maker to suggest a new alternative that is different from the existing alternatives, but equally preferable. As shown by several experiments in psychology of the decisions, choosing between alternatives is different from matching two alternatives since the two aspects involve two different reasoning strategies. Consequently,by including this type of preference information one can represent more faithfully the DM’s preferences. Such information about indifference should narrow down the set of compatible value functions much more quickly than standard pairwise comparisons, and a first simple example at least indicates that this intuition seems to be correct.

[1]  S. Greco,et al.  Decision Rule Approach , 2005 .

[2]  S. Greco,et al.  Rough set and rule-based multicriteria decision aiding , 2012 .

[3]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[4]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[5]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[6]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[7]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[8]  S. Greco,et al.  Necessary and possible preference structures , 2013 .

[9]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[10]  A. Tversky,et al.  Contingent weighting in judgment and choice , 1988 .

[11]  Salvatore Greco,et al.  An Overview of ELECTRE Methods and their Recent Extensions , 2013 .

[12]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[13]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[14]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[15]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[16]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[17]  P. Slovic Choice Between Equally Valued Alternatives. , 1975 .

[18]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[19]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[20]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[21]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[22]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[23]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .

[24]  Vincent Mousseau,et al.  Inferring an ELECTRE TRI Model from Assignment Examples , 1998, J. Glob. Optim..

[25]  Jürgen Branke,et al.  Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression , 2009, EMO.

[26]  James S. Dyer,et al.  Maut — Multiattribute Utility Theory , 2005 .

[27]  Dov Pekelman,et al.  Mathematical Programming Models for the Determination of Attribute Weights , 1974 .

[28]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[29]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .