Correlation measure, linear complexity and maximum order complexity for families of binary sequences

[1]  Katalin Gyarmati Measures of Pseudorandomness , 2013, Finite Fields and Their Applications.

[2]  Harald Niederreiter,et al.  Linear Complexity and Related Complexity Measures for Sequences , 2003, INDOCRYPT.

[3]  E. S. Warner,et al.  Triple correlation analysis of binary sequences for codeword detection , 1994 .

[4]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[5]  Arne Winterhof,et al.  A Note on Hall’s Sextic Residue Sequence: Correlation Measure of Order $k$ and Related Measures of Pseudorandomness , 2020, IEEE Transactions on Information Theory.

[6]  Bernie Mulgrew,et al.  Triple correlation analysis of m-sequences , 1993 .

[7]  Arne Winterhof,et al.  LINEAR COMPLEXITY AND RELATED COMPLEXITY MEASURES , 2010 .

[8]  Arne Winterhof,et al.  Linear complexity profile of binary sequences with small correlation measure , 2006, Period. Math. Hung..

[9]  Zhixiong Chen,et al.  Structure of Pseudorandom Numbers Derived from Fermat Quotients , 2010, WAIFI.

[11]  Cees J. A. Jansen,et al.  The Shortest Feedback Shift Register That Can Generate A Given Sequence , 1989, CRYPTO.

[12]  Ananthram Swami,et al.  Bibliography on higher-order statistics , 1997, Signal Process..

[13]  Wilfried Meidl,et al.  Linear complexity of sequences and multisequences , 2013, Handbook of Finite Fields.

[14]  Rainer A. Rueppel,et al.  Linear Complexity and Random Sequences , 1985, EUROCRYPT.

[15]  Cees J. A. Jansen The Maximum Order Complexity of Sequence Ensembles , 1991, EUROCRYPT.

[16]  Arne Winterhof,et al.  On discrete Fourier transform, ambiguity, and Hamming-autocorrelation of pseudorandom sequences , 2014, Des. Codes Cryptogr..

[17]  Harald Niederreiter,et al.  On the Structure of Inversive Pseudorandom Number Generators , 2007, AAECC.

[18]  Arne Winterhof,et al.  Maximum-Order Complexity and Correlation Measures , 2017, Cryptogr..

[19]  Zhi-xiong Chen,et al.  Modified constructions of binary sequences using multiplicative inverse , 2008 .

[20]  Harald Niederreiter,et al.  Sequences With High Nonlinear Complexity , 2013, IEEE Transactions on Information Theory.

[21]  Katalin Gyarmati,et al.  On the correlation of binary sequences, II , 2012, Discret. Math..

[22]  Xiaoni Du,et al.  A Construction of Binary Cyclotomic Sequences Using Extension Fields , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[23]  Parampalli Udaya,et al.  Low Probability of Intercept properties of some binary sequence families with good correlation properties , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.