A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS

This paper presents the first linear bulk CMOS power amplifier (PA) targeting low-power fifth-generation (5G) mobile user equipment integrated phased array transceivers. The output stage of the PA is first optimized for power-added efficiency (PAE) at a desired error vector magnitude (EVM) and range given a challenging 5G uplink use case scenario. Then, inductive source degeneration in the optimized output stage is shown to enable its embedding into a two-stage transformer-coupled PA; by broadening interstage impedance matching bandwidth and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at -25 dBc EVM for a 250 MHz-wide 64-quadrature amplitude modulation orthogonal frequency division multiplexing signal with 9.6 dB peak-to-average power ratio. The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6 dB back-off from saturation. To the best of the authors' knowledge, these are the highest measured PAE values among published K-and Ka-band CMOS PAs.

[1]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[2]  Gabriel M. Rebeiz,et al.  45-nm CMOS SOI Technology Characterization for Millimeter-Wave Applications , 2014, IEEE Transactions on Microwave Theory and Techniques.

[3]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[4]  Seizo Onoe 1.3 Evolution of 5G mobile technology toward 1 2020 and beyond , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[5]  Bumman Kim,et al.  A Ultra-High PAE Doherty Amplifier Basedon 0.13-$mu$m CMOS Process , 2006, IEEE Microwave and Wireless Components Letters.

[6]  Brian Floyd,et al.  A 28-GHz class-J Power Amplifier with 18-dBm output power and 35% peak PAE in 120-nm SiGe BiCMOS , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[7]  T. Vanhoucke,et al.  RF reliability of short channel NMOS devices , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  William R. Panton,et al.  Effects of nonlinear distortion on CDMA communication systems , 1996, IMS 1996.

[9]  R. Meyer,et al.  High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages , 1998, IEEE J. Solid State Circuits.

[10]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[11]  Harish Krishnaswamy,et al.  High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation , 2014, IEEE Transactions on Microwave Theory and Techniques.

[12]  W. Heinrich,et al.  Flip-Chip Interconnects for 250 GHz Modules , 2015, IEEE Microwave and Wireless Components Letters.

[13]  P. Reynaert,et al.  Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers , 2009, IEEE Journal of Solid-State Circuits.

[14]  Junxiong Deng,et al.  A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[15]  S.H.-L. Tu,et al.  A 5.25-GHz CMOS Cascode Class-AB Power Amplifier for Wireless Communication , 2007, 2007 IEEE Conference on Electron Devices and Solid-State Circuits.

[16]  V. Aparin,et al.  Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[17]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[18]  R. A. Hadaway,et al.  Monolithic transformers for silicon RF IC design , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[19]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[20]  V. Aparin,et al.  Analysis of CDMA signal spectral regrowth and waveform quality , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[21]  Hossein Hashemi,et al.  mm-Wave Silicon Power Amplifiers and Transmitters , 2016 .

[22]  Sherif Shakib,et al.  20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[23]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[24]  Eran Socher,et al.  Analysis of cross-coupled common-source cores for W-band LNA design at 28nm CMOS , 2013, 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013).

[25]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[26]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[27]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[28]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[29]  Patrick Reynaert,et al.  60GHz power amplifier with distributed active transformer and local feedback , 2010, 2010 Proceedings of ESSCIRC.

[30]  R. Bishop,et al.  A 5-GHz 20-dBm Power Amplifier With Digitally Assisted AM-PM Correction in a 90-nm CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[31]  Theodore S. Rappaport,et al.  Millimeter Wave Channel Modeling and Cellular Capacity Evaluation , 2013, IEEE Journal on Selected Areas in Communications.

[32]  J. Paramesh,et al.  A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion , 2006, IEEE Journal of Solid-State Circuits.

[33]  Behzad Razavi,et al.  A study of phase noise in CMOS oscillators , 1996, IEEE J. Solid State Circuits.

[34]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[35]  W. Heinrich,et al.  The flip-chip approach for millimeter wave packaging , 2005, IEEE Microwave Magazine.

[36]  Yue Ping Zhang,et al.  Flipping the CMOS Switch , 2010, IEEE Microwave Magazine.

[37]  Eric Kerherve,et al.  2.10 A 60GHz 28nm UTBB FD-SOI CMOS reconfigurable power amplifier with 21% PAE, 18.2dBm P1dB and 74mW PDC , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[38]  Patrick Reynaert,et al.  14.3 A Push-Pull mm-Wave power amplifier with <0.8° AM-PM distortion in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[39]  Behzad Razavi,et al.  RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) , 2011 .

[40]  Dimitris Psychoudakis,et al.  Millimeter-wave base station for mobile broadband communication , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[41]  Theodore S. Rappaport,et al.  Millimeter Wave Wireless Communications , 2014 .