The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR-X Images

Abstract: Climate change is a factor that largely contributes to the increase of forest areas affected by natural damages. Therefore, the development of methodologies for forest monitoring and rapid assessment of affected areas is required. Space-borne synthetic aperture radar (SAR) imagery with high resolution is now available for large-scale forest mapping and forest monitoring applications. However, a correct interpretation of SAR images requires an adequate preprocessing of the data consisting of orthorectification and radiometric calibration. The resolution and quality of the digital elevation model (DEM) used as reference is crucial for this purpose. Therefore, the primary aim of this study was to analyze the influence of the DEM quality used in the preprocessing of the SAR data on the mapping accuracy of forest types. In order to examine TerraSAR-X images to map forest dominated by deciduous and coniferous trees, High Resolution SpotLight images were acquired for two study sites in southern Germany. The SAR images were preprocessed with a Shuttle Radar Topography Mission (SRTM) DEM (resolution approximately 90 m), an airborne laser scanning (ALS) digital terrain model (DTM) (5 m resolution), and an ALS digital surface model (DSM) (5 m resolution). The orthorectification of the SAR images using high resolution ALS DEMs was found to be important for the reduction of errors in pixel location and to

[1]  Wolfram Mauser,et al.  Generation of geometrically and radiometrically terrain corrected SAR image products , 2007 .

[2]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[3]  Brian Brisco,et al.  Improved Spatial Mapping of Rainfall Events with Spaceborne SAR Imagery , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[4]  F. Ulaby,et al.  Multitemporal land-cover classification using SIR-C/X-SAR imagery , 1998 .

[5]  J. Breidenbach,et al.  Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data , 2010, European Journal of Forest Research.

[6]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[7]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[8]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[9]  M. Vastaranta,et al.  Prediction of plot-level forest variables using TerraSAR-X stereo SAR data , 2012 .

[10]  Manfred Reich,et al.  Forest monitoring with TerraSAR-X: first results , 2010, European Journal of Forest Research.

[11]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[12]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[13]  Jiancheng Shi,et al.  Monitoring of environmental conditions in Taiga forests using ERS-1 SAR , 1994 .

[14]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[15]  Helko Breit,et al.  TerraSAR-X Ground Segment Basic Product Specification Document , 2008 .

[16]  Maurizio Santoro,et al.  Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[18]  Kenneth J. Ranson,et al.  Disturbance recognition in the boreal forest using radar and Landsat-7 , 2003 .

[19]  Nikolaus Faller,et al.  TerraSAR-X and TanDEM-X: Revolution in spaceborne radar , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Michael Eineder,et al.  TerraSAR-X: A New Perspective for Applications Requiring High Resolution Spaceborne SAR Data , 2003 .

[21]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[22]  Joost J. M. de Jong,et al.  Monitoring of rain water storage in forests with satellite radar , 2002, IEEE Trans. Geosci. Remote. Sens..

[23]  Fawwaz T. Ulaby,et al.  Land-cover classification and estimation of terrain attributes using synthetic aperture radar , 1995 .

[24]  T. Nonaka,et al.  EVALUATION OF THE GEOMETRIC ACCURACY OF TERRASAR-X , 2008 .

[25]  Urs Wegmüller,et al.  SAR geocoding and multi-sensor image registration , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[26]  P. Townsend Principles and Applications of Imaging Radar: Manual of Remote Sensing , 2000 .

[27]  B. Koch,et al.  TREESVIS-A SOFTWARE SYSTEM FOR SIMULTANEOUS 3 D-REAL-TIME VISUALISATION OF DTM , DSM , LASER RAW DATA , MULTISPECTRAL DATA , SIMPLE TREE AND BUILDING MODELS , 2004 .

[28]  Dirk H. Hoekman,et al.  Radar backscattering of forest stands , 1985 .

[29]  Iain H. Woodhouse,et al.  Forest height retrieval from commercial X-band SAR products , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Jiancheng Shi,et al.  Monitoring of Environmental Conditions in Taiga Forests Using ERS-1 SAR Data: Results From the Commissioning Phase , 1993 .

[31]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[32]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[33]  Mathias Schardt,et al.  Forest Assessment Using High Resolution SAR Data in X-Band , 2011, Remote. Sens..

[34]  D. J. Knowlton,et al.  Radar Imagery for Forest Cover Mapping , 1981 .

[35]  A. Beaudoin,et al.  On the use of ERS-1 SAR data over hilly terrain: necessity of radiometric corrections for thematic applications , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[36]  U. Wegmuller,et al.  Automated terrain corrected SAR geocoding , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[37]  Eric Rignot,et al.  Classification of boreal forest cover types using SAR images , 1997 .

[38]  M.C. Dobson,et al.  Seasonal change in radar backscatter from mixed conifer and hardwood frorests in northern Michigan , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[39]  A. Barbati,et al.  Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems , 2010 .

[40]  Wolfgang Koppe,et al.  Validation of Pixel Location Accuracy of Orthorectified TerraSAR-X Products , 2010 .

[41]  D. Fritsch,et al.  Das Laserscan-DGM von Baden-Württemberg , 2001 .

[42]  Dominique Guyon,et al.  The contribution of remote sensing to the assessment of drought effects in forest ecosystems , 2006 .

[43]  Kamal Sarabandi,et al.  An evaluation of the JPL TOPSAR for extracting tree heights , 2000, IEEE Trans. Geosci. Remote. Sens..

[44]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[45]  D. Leckie Synergism of synthetic aperture radar and visible/infrared data for forest type discrimination. , 1990 .

[46]  R. J. Brown,et al.  Radar detection of a dew event in wheat , 1990 .

[47]  JoBea Way,et al.  Mapping of forest types in Alaskan boreal forests using SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[48]  Kenneth I. Ranney,et al.  Effects of registration errors on multi-look averaged data , 2005, SPIE Defense + Commercial Sensing.

[49]  G. P. Saundercock The Geocoding of Synthetic Aperture Radar Imagery and an Application to Nautical Charting , 1995 .

[50]  Juha Hyyppä,et al.  Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables , 2010, Remote. Sens..